Intel Core i7-3770K et i5-3570K : Ivy Bridge 22nm en test
Publié le 23/04/2012 par Guillaume Louel et Marc Prieur
22 nm
L'arrivée de ce nouveau procédé est donc la première grande nouveauté de ces processeurs Ivy Bridge. Comme à son habitude, Intel est le premier à lancer commercialement des puces fabriquées dans cette nouvelle finesse de gravure. L'intérêt de réduire cette finesse étant d'améliorer ce que l'on appelle les "performances" des transistors.
Les transistors peuvent être assimilés pour rappel à des interrupteurs. L'équivalent du bouton est la porte (Gate) et à la place de notre doigt pour appuyer dessus, c'est une tension qui est appliquée sur la gate et qui va laisser passer, ou non, le courant à l'intérieur du transistor. Sur le schéma ci-dessus, on peut voir tracé la tension qui passe dans le canal (le courant que laisse passer le transistor, à l'image du courant qui ira allumer votre ampoule) en fonction de la tension appliquée à la porte. En bas à gauche, le transistor est éteint et en haut à droite allumé.
Quand l'on parle de performances d'un transistor, on parle en pratique de la quantité de tension nécessaire à appliquer pour le faire changer d'état (non actif/actif). Dans le cas du 22nm d'Intel, schématisé ici en bleu, cela se traduit sur la courbe par une pente plus raide. De là, plusieurs possibilités sont offertes aux ingénieurs. Sur la ligne de droite, on ne touche pas à la quantité de tension nécessaire au niveau de la gate pour activer le transistor. Dans ce cas, on réduit la tension résiduelle dans le channel, ce que l'on appelle les courants de fuite, quelque chose de particulièrement important à réduire quand l'on veut proposer des processeurs mobiles.
A l'inverse à gauche, on peut décider de conserver la même quantité de courant de fuite que précédemment. Résultat, c'est la tension nécessaire à l'activation dans la gate qui réduit. On réduit donc la tension nécessaire pour alimenter les transistors, et l'on diminue le temps d'activation (le transistor est plus rapide). A chaque nouveau procédé de fabrication, les ingénieurs doivent donc décider de balancer, en fonction de leurs besoins, la question de la performance des transistors avec celle des courants de fuite.
Tri-Gate
La nouveauté principale du 22nm d'Intel ne tient cependant pas uniquement à la finesse de gravure, mais également à la forme même des transistors. Intel innove assez radicalement en étant le premier à lancer des processeurs utilisant des transistors dont la porte n'est plus construite sur un plan, mais dans l'espace, entourant un canal surélevé.
On parle alors de technologie FinFET, ou dans la nomenclature Intel, de Tri-Gate. Notez que plusieurs ailettes (Fins) peuvent être cumulées pour améliorer les performances des transistors.
Intel évoque ici un exemple des gains qui peuvent être obtenus par le Tri-Gate et qui caractérise ce type de transistors. En effet dans ce graphique qui indique le temps d'activation en fonction de la tension appliquée à la porte (plus la valeur est basse et plus le transistor est rapide), on notera un gain massif à basse tension, ce qui sous entend la possibilité de créer des puces fonctionnant à des fréquences élevées tout en maintenant une tension faible. Dans un processeur de bureau, cela peut indiquer une bonne propension à l'undervolting.
Bien entendu, les caractéristiques d'un transistor seul ne sont qu'une petite partie de l'équation. La variabilité du process de fabrication joue pour beaucoup et nous vérifierons en pratique si les gains annoncés se traduisent sur l'undervolting, l'overclocking ou la consommation.
La tactique du Tick - Tock
Les améliorations côté CPU
Sommaire
1 - La tactique du Tick - Tock
2 - 22 nm et Tri-gate
3 - Les améliorations côté CPU
4 - Les améliorations côté GPU
5 - Gamme et plate-forme Ivy Bridge
6 - HD Graphics 4000 et 2500 : consommation et 3D
7 - HD Graphics : CPU vs IGP, QuickSync
8 - Core i5-3570K et 3770K, DZ77GA-70K et protocole
9 - Consommation, efficacité énergétique
10 - Température
11 - Overclocking et undervolting
12 - Performances à fréquence égale, DDR3-2133, PCI-Express 3.0
2 - 22 nm et Tri-gate
3 - Les améliorations côté CPU
4 - Les améliorations côté GPU
5 - Gamme et plate-forme Ivy Bridge
6 - HD Graphics 4000 et 2500 : consommation et 3D
7 - HD Graphics : CPU vs IGP, QuickSync
8 - Core i5-3570K et 3770K, DZ77GA-70K et protocole
9 - Consommation, efficacité énergétique
10 - Température
11 - Overclocking et undervolting
12 - Performances à fréquence égale, DDR3-2133, PCI-Express 3.0
13 - Rendu 3D : Mental Ray et V-Ray
14 - Compilation : Visual Studio et MinGW/GCC
15 - Compression : 7-zip et WinRAR
16 - Encodage : x264 et MainConcept H.264
17 - Traitement photo : Lightroom et Bibble
18 - IA d'échecs : Houdini et Fritz
19 - Jeux 3D : Crysis 2 et Arma II : OA
20 - Jeux 3D : Rise of Flight et F1 2011
21 - Jeux 3D : Total War Shogun 2, Starcraft II et Anno 1404
22 - Moyennes
23 - Conclusion
14 - Compilation : Visual Studio et MinGW/GCC
15 - Compression : 7-zip et WinRAR
16 - Encodage : x264 et MainConcept H.264
17 - Traitement photo : Lightroom et Bibble
18 - IA d'échecs : Houdini et Fritz
19 - Jeux 3D : Crysis 2 et Arma II : OA
20 - Jeux 3D : Rise of Flight et F1 2011
21 - Jeux 3D : Total War Shogun 2, Starcraft II et Anno 1404
22 - Moyennes
23 - Conclusion
Vos réactions
Contenus relatifs
- [+] 09/05: AMD Ryzen 7 2700, Ryzen 5 2600 et I...
- [+] 05/04: Pas de MAJ Microcode pour les Gulft...
- [+] 03/04: Intel lance la 2ème vague de sa 8èm...
- [+] 05/10: Intel Core i7-8700K, Core i5-8600K,...
- [+] 12/09: Core i7-7820X : Un Skylake-X mieux ...
- [+] 07/09: Les Skylake en fin de vie chez Inte...
- [+] 23/08: Coffee Lake incompatible avec les L...
- [+] 29/06: Intel Core i9-7900X et Core i7-7740...
- [+] 03/01: Core i5-7600K et i7-7700K : pour qu...
- [+] 28/12: Gigabyte BRIX Gaming GT