L'ITRS prépare l'après loi de Moore

Tags : 10nm; Intel; Process; Samsung; TSMC;
Publié le 17/02/2016 à 16:18 par
Imprimer

C'est la section actualité de la très sérieuse revue scientifique Nature  qui l'affirme : la loi de Moore est arrivée à son terme. Énoncée en 1965 par Gordon Moore, l'un des cofondateurs d'Intel, il s'agit d'une observation par laquelle la quantité de transistors dans les circuits intégrés doublait à peu près tous les ans. Une observation transformée en loi pour prédire que cette cadence pouvait être extrapolée pour les années à venir.

En 1975, la loi avait été révisée pour prendre la forme que l'on connaît actuellement, à savoir un doublement des transistors tous les deux ans. L'importance de la loi de Moore allait cependant au-delà de la simple prédiction puisqu'elle prenait en compte les coûts de fabrication : l'observation se fait sur les puces ayant le coût par transistor le plus faible (tentant donc de prendre en compte les questions de yields et de défauts en fonction de la taille des puces).

Plus qu'une prédiction, la loi de Moore a servie, particulièrement chez Intel, de guide au fil des années, prédisant à l'avance les budgets en nombre de transistors alloués aux ingénieurs, et poussant vers l'avant la nécessité d'investir dans de nouveaux process de fabrications, la fameuse stratégie du Tick-Tock poussée d'abord en interne par Pat Gelsinger au début des années 2000 avant d'être utilisée publiquement pour décrire les générations à venir.

La loi de Moore, quand tout allait bien, ou presque !

De manière intéressante, au-delà d'Intel, c'est toute l'industrie du semi-conducteur qui s'est mise d'accord autour de la loi de Moore, à savoir non seulement les fondeurs, mais aussi et surtout les fournisseurs d'outils. Le besoin de coordination entre tous les acteurs aura conduit à l'élaboration d'une roadmap, d'abord appelée National Technology Roadmap for Semiconductors dès 1993, avant d'être renommée sous sa forme actuelle, l'International Technology Roadmap for Semiconductors (ITRS).

Le rôle joué par cette roadmap, dont la dernière version a été publiée en 2013 aura été particulièrement important ces dernières années où, passé le 90nm, les challenges techniques ont contraint à des changements d'approches importants. L'augmentation des performances par la fréquence, méthode classique aura atteint un plateau à cause de l'augmentation de la consommation, poussant dans le commerce les stratégies de multiplication des coeurs que l'on connaît. Le rôle de la roadmap, au-delà de la concertation, est de s'assurer de trouver des pistes pour continuer la cadence de réduction des coûts/augmentation des transistors de la loi de Moore.

La dernière roadmap ci-dessus donnait des grandes lignes sur la manière de mettre à l'échelle les différents composants des transistors. Après les difficultés autour du 90nm, l'industrie est passé progressivement de la règle dite de la mise à l'échelle géométrique (on réduit tout dans des proportions identiques, le nom du node indiquant en général la taille de la porte) à celle de la mise à échelle par équivalence (equivalent scaling).

Etant donné que différentes parties composant les puces posent des problèmes différents, des règles d'équivalences ont été mises au point pour permettre de continuer a atteindre les buts de réduction des coûts/augmentation de densité imposé par la loi de Moore (on peut voir sur le tableau la couche d'interconnexion M1 et l'écart minimal entre deux transistors FinFET, en passant par des estimations des tailles de blocs fondamentaux comme la SRAM).

Pour 2016, la roadmap annonçait par exemple de la SRAM 6 transistors (6T) haute performance en 10nm autour de 0.048 µm2, ce qui n'est pas très éloigné de ce que présentait Samsung il y a une dizaine de jours de cela. En pratique cependant, on notera qu'on est globalement assez en retard sur la roadmap qui prévoyait des débuts de production à petite échelle en 10nm en 2015 (Risk Start dans la roadmap, suivi de HVM, fabrication en volume). Chez TSMC par exemple, la production risque est prévue pour la fin 2016 avec une production en volume pour 2017. Intel prévoit ses puces en volume pour 2017 également.

Évidemment depuis 2013 les choses se sont un peu plus compliquées et l'absence de roadmap en provenance de l'ITRS n'a pas forcément aidé. En pratique, la réduction des coûts s'est arrêtée, avec même un retour en arrière à 16nm signant de facto la fin de la loi de Moore, comme on peut le voir sur cette estimation ci-dessus tirée d'une présentation de l'ITRS en février 2015.

L'absence de nouvelle roadmap en provenance de l'ITRS aura même donné lieu à des divergences d'interprétations fortes, Intel titillant ses concurrents sur la question de la densité théorique. TSMC et Samsung ont fait pour rappel le choix de conserver un BEOL (Back End of Line, la partie basse d'une puce qui sert à l'interconnexion des transistors) commun entre le 20 et le 16nm pour accélérer la cadence de mise en production. En pratique chez TSMC, malgré le BEOL commun, le half pitch M1 reste tout de même dans les clous à 32nm (entre 40 et 31.8 sur la roadmap).

La densité pratique reste de toute manière très différente de ce que peuvent proposer des formules grossières comme celle utilisée par Intel (qui multipliait le pitch M1 par le pitch entre deux portes), qui pour exploiter les FinFET aura fait le choix d'utiliser pour certains de ses transistors critiques des structures plus larges composées de plusieurs fins (dans des proportions non négligeables même si la proportion exacte est rarement évoquée de manière précise par Intel).

Cumulé a de multiples autres détails (différents types de blocs sont présents avec des densités différentes, de la SRAM aux blocs plus ou moins critiques) il est impossible de tirer grand-chose de la théorie. L'écart entre un Core M Broadwell 14nm fabriqué par Intel (82mm2 pour 1.3 milliards de transistors) et un A8 fabriqué par TSMC en 20nm (89 mm2 pour 2 milliards de transistors) montre qu'il est difficile de comparer quoique ce soit à moins de prendre deux puces strictement identiques. Cela aura été possible pour l'A9 d'Apple, dont la superficie atteint 96mm2 chez Samsung contre 104.5mm2 chez TSMC.

Le mois prochain, l'ITRS devrait donc enfin communiquer une nouvelle roadmap qui d'après Nature tirera définitivement un trait sur la question de la loi de Moore comme moteur d'évolution unique. D'après Nature, la prochaine roadmap se concentrera sur les applications pratiques, allant du smartphones aux puces serveurs et regardera les applications pratiques, que ce soit au niveau circuits d'alimentations, des capteurs nécessaires, ou d'autres blocs de siliciums répondant à des besoins particuliers.

La véritable question est de savoir ce que comportera réellement cette roadmap qui serait rebaptisée d'après Nature International Roadmap for Devices and Systems, abandonnant même le mot transistor !

Ce que l'on sait, c'est que la réorganisation de l'ITRS en 2014 s'est faite autour de groupes de travaux, avec notamment un groupe baptisé « More Moore » pour évoquer les pistes techniques pour les prochains nodes, dont vous pouvez retrouver ci-dessous la dernière présentation datant de février 2015.

 
 

Une présentation intéressante qui évoque de multiples pistes et où l'on trouve un début de roadmap que nous avons remis ci-dessous :

En pratique, après l'ère de la mise à l'échelle géométrique, et l'ère des équivalences, l'ITRS évoque l'ère du "3D Power Scaling" dont les meilleurs représentants sont la NAND 3D ou des technologies comme la mémoire HBM. Des techniques complexes à appliquer aux puces logiques même si la présentation évoque quelques pistes et alternatives.

On attendra donc le mois prochain pour en savoir un peu plus !

Vos réactions

Top articles