Les contenus liés au tag Apple

Afficher sous forme de : Titre | Flux Filtrer avec un second tag : 10nm; AMD; ARM; GlobalFoundries; Intel; Nvidia; Process; Qualcomm; Samsung; TSMC;

Polaris 11 en version mobile chez AMD

Publié le 28/10/2016 à 14:29 par Guillaume Louel

Sans trop de surprises, le lancement des MacBook Pro hier par Apple s'est accompagné, côté GPU, de puces AMD. Le constructeur a mis pour l'occasion en ligne un site mettant en avant ses nouvelles références .

Si l'on trouve des Polaris 10 mobiles  sur le site d'AMD avec des références comme les R9 M485X, les MacBook Pro ont droit à leur propre nomenclature, on parlera de Radeon... Pro . Cela permet aussi d'enlever le M, quelque chose qui fait écho à ce que l'on a vu chez Nvidia il y a quelques semaines.

Techniquement, il s'agit de puces Polaris 11, qui sont aussi utilisées côté desktop dans les Radeon RX 460. Il s'agit du "petit" Polaris qui propose 16 CU et un bus mémoire 128 bits. Vous pouvez retrouver plus de détails sur l'architecture des Polaris dans cet article.

Trois références sont annoncées, les Radeon Pro 460, 455 et 450. Nous avons récapitulé leurs caractéristiques sur le tableau ci dessous :

Nous avons ajouté dans la première colonne les caractéristiques de la RX 460, la configuration desktop de Polaris 11 afin d'avoir un point de comparaison, ainsi que le M9 370X qui équipait la génération précédente de MacBook Pro. L'arrivée du 14nm fait que l'on a droit a un choc générationnel. Par rapport à la configuration desktop, AMD réduit la fréquence, et exploite tout les CU du die Polaris 11 pour offrir environ 84% du niveau de performance théorique. La bande passante mémoire est inférieure de 10.4%.

Il est intéressant également de faire un petit aparté sur les CPU utilisés par Apple dans ces MacBook Pro, on retrouvera ces références (dans les configurations de base) :

La gamme d'Intel est compliquée, et celle d'Apple a peine moins puisque le constructeur propose un CPU 15 watts dans son modèle d'entrée de gamme 13 pouces (le modèle sans "touch bar" avec ironiquement une batterie encore plus grosse !). L'autre 13 pouces (avec "touch bar") utilise l'autre Core i5 28 Watts. Dans les deux cas il n'y a pas de GPU AMD sur ces configurations, et Apple utilise les GPU Intel avec 64 Mo d'eDRAM (GT3e). La marque annonce la même autonomie pour les deux modèles, ce qui est assez risible !

Le point qui nous intéresse le plus concerne la situation GPU sur les modèles 15 pouces. Contrairement à la gamme précédente de MacBook ou Intel était présent sur toutes les configs côté GPU (le M370X n'était disponible qu'en option sur une référence), ce n'est plus le cas ici. Les Core i7 utilisés sont dépourvus d'eDRAM et on retrouve systématiquement un GPU AMD.

Intel semble en effet avoir eu des problèmes de fabrication avec ses modèles GT4e, équipés de 128 Mo d'eDRAM. Le constructeur ne communique pas vraiment dessus mais les Skylake GT4e sont pratiquement absents des gammes mobiles des constructeurs (en cherchant, on en retrouve un dans un... NUC Intel !).

Difficile d'en connaître la raison exacte, mais le constructeur a qui plus est jeté l'éponge sur le GT4e pour la prochaine génération, Kaby Lake, comme nous vous l'indiquions un peu plus tôt. Cela reste un coup dur pour le constructeur dont la stratégie GPU reposait en grande partie sur l'apport proposé par cet eDRAM pour les hautes performances. Si l'eDRAM spécifiquement est en cause, il sera intéressant de voir quelle alternative le constructeur choisira pour la remplacer.

Ou si, plus simplement, il se contentera d'être de nouveau absent du marché du GPU mobile milieu/haut de gamme.

10 et 7nm en avance chez TSMC ?

Publié le 03/10/2016 à 12:24 par Guillaume Louel

Un des auteurs du blog SemiWiki  a assisté à l'OIP Ecosystem Forum de TSMC et rapporte plusieurs informations intéressantes ayant été données par le fondeur taiwannais concernant ses process à venir.

Pour ce qui est du 10nm, TSMC serait en avance avec une production en volume (HVM) avancée d'un trimestre : au lieu de démarrer en Q1 2017, elle démarrera au dernier trimestre de cette année.

Le développement du 7nm, lié à celui du 10nm (voir notre article précédent) serait lui aussi en avance d'un trimestre. La production "risque" démarrera au premier trimestre 2017, et la production en volume au quatrième trimestre 2017.

La roadmap 10/7nm de TSMC, déjà excessivement agressive par rapport à la concurrence, le devient encore plus. TSMC utilisera pour rappel le même matériel pour la fabrication des deux nodes (avec une densité qui augmente largement, 1.63x annoncé entre 10 et 7nm) ce qui explique la manière dont les deux nodes avancent en simultanée.

On rappellera toutefois que si le 10nm sera disponible rapidement en volume, il ne devrait être utilisé que par les gros clients "mobiles" de TSMC (Apple et possiblement Qualcomm). La majorité des clients de TSMC (fabricants de GPU inclus) devrait passer directement au 7nm qui sera le vrai node "pour tous" (à l'image de ce que l'on a pu voir avec le 20nm et le 16nm).

TSMC et InFo PoP pour l'A10 de l'iPhone 7

Publié le 19/09/2016 à 14:38 par Guillaume Louel

Ce week end, la société Chipworks a procédé à son traditionnel "teardown" des puces incluses dans l'iPhone 7 , en se concentrant particulièrement sur le SoC A10 d'Apple.

Rappel sur l'A9

Avant de regarder l'A10, revenons un instant sur l'A9 inclus l'année dernière dans l'iPhone 6S. Il avait la particularité d'être sourcé en parallèle chez Samsung et TSMC, quelque chose de quasi unique pour des puces haut de gamme sur des process de dernière génération, ce qui nous avait permis d'effectuer quelques comparaisons.


Les deux A9 de l'iPhone 6S (2015)

La différence la plus visible était la densité des deux process : l'A9 "Samsung" mesurant 96mm2, contre 104.5mm2 pour la version TSMC. A l'époque nous n'avions pas de certitudes sur les variantes exactes des process utilisées. Depuis, Chipworks a confirmé qu'il s'agissait bien du 14LPE chez Samsung. Le cas de TSMC est plus compliqué, Chipworks ne répondant pas (gratuitement) à la question. Les rumeurs laissent penser qu'il ne s'agissait pas d'un simple 16FF, mais d'une version "custom" empruntant en partie au process 16FF+.

Outre la densité, les tests pratiques avaient suggéré une différence de consommation à pleine charge avec un avantage pour la puce de TSMC. De quoi laisser penser que son process avait besoin de tensions inférieures à celui de Samsung pour obtenir les mêmes performances.

Depuis, Chipworks a la aussi répondu partiellement à la question suggérant que le problème se situerait pour le process de Samsung sur le rapport puissance/performances de ses NMOS . On ne sait pas si le problème persiste sur la version 14LPP qui a remplacé le 14LPE.

L'A10 : 16FFC TSMC

Première différence par rapport à l'année dernière, l'A10 semble produit cette année exclusivement par TSMC. Il est plus large que l'A9, mesurant 125mm2 pour 3.3 milliards de transistors annoncés. Côté process il s'agit du 16FFC (ou d'une variante) de TSMC, la troisième version "optimisée" du 16nm de TSMC. Annoncée en janvier dernier, le C signifie "Compact" et ce process vise avant tout les usages basses consommation tout en réduisant de manière significative les coûts de fabrication.

D'après Chipworks, l'utilisation des bibliothèques optimisées permet une bien meilleure utilisation du die, avec une compacité équivalente à celle des process TSMC précédents. Chipworks estime que la même puce aurait demandé 150mm2 en 16FF. Etant donné que 70 tapeouts de clients de TSMC sont attendus sur ce process cette année, les progrès de densité du 16FFC devraient profiter assez largement, on attendra de voir les constructeurs qui annonceront des puces l'utilisant.

 
 

Chipworks note également que l'A10 est beaucoup moins haut que les générations précédentes. Comme beaucoup de SoC, il est de type PoP et embarque la mémoire au dessus du die logique. Cependant plutôt que d'empiler les quatre dies de mémoire (2 Go de LPDDR4 Samsung sur l'A10 de l'iPhone 7), ils sont placés côte à côte.

Qui plus est, comme nous le supposions la puce utilise le nouveau packaging InFo de TSMC (dans sa version InFo-PoP) pour relier les dies entre eux.

big.LITTLE et performances

Côté performances les premiers benchmarks synthétiques évoquent 40% de gains pour le CPU ARM par rapport à l'année dernière, tout en restant en 16nm.

Pour arriver à ce gain, Apple augmente d'abord significativement la fréquence, passant de 1.85 GHz sur l'A9 à 2.35 GHz sur l'A10. Sur ce point, la marque exploite à la fois la marge notée de son process l'année dernière (on peut supposer facilement que l'A9 aurait eu une fréquence plus élevée s'il avait été sourcé uniquement chez TSMC) et les gains apportés par le 16FFC.

Ce gain de 27% de fréquence est accompagné de changements au niveau de l'architecture. Ceux ci ne sont pas encore connus, au delà du nom Hurricane, mais Chipworks note que le cluster CPU prend une place plus importante sur le die, 16mm2 face à 13mm2 sur l'A9, malgré l'utilisation d'un process plus compact.

Il est cependant difficile de se baser sur cette différence de taille étant donné que l'A10 est en réalité un quad core big.LITTLE dans la nomenclature ARM. En plus des deux coeurs hautes performances à 2.35 GHz (big), deux coeurs basse consommation à 1.05 GHz (LITTLE) sont également présents sur le die (leur emplacement exact est pour l'instant inconnu, ce qui vaut les points d'interrogation sur le diagramme au dessus).

Contrairement à d'autres implémentations dans l'écosystème ARM, les applications ne peuvent pas utiliser en simultanée les deux blocs de coeurs, le passage de l'un à l'autre étant transparent pour elles (géré par la puce et l'OS). L'intérêt de cet arrangement est bien entendu d'augmenter l'autonomie en ne sollicitant les coeurs haute performances que lorsque nécessaire.

Déjà largement en avance côté performances sur le reste de l'écosystème ARM, l'A10 commence à devenir embarrassant même pour Intel, dépassant un Core M Skylake en monothread sous Geekbench 4 (voir ici  et là  ), avec un "TDP" au moins deux fois inférieur (et sans mécanisme Turbo).

Intel se consolera tout de même de sa présence dans une partie des iPhone 7 car c'est l'autre information de Chipworks, la société confirme qu'une partie des modèles utilise un modem Intel XMM 7360 (certains modèles intègrent un modem Qualcomm X12). Très en retard, le XMM 7360 est un modem LTE 450 Mb/s Cat 10 certes dessiné par Intel, mais fabriqué selon toutes vraisemblances comme ses prédécesseurs... par TSMC.

Intel Custom Foundry prend une licence ARM !

Publié le 17/08/2016 à 16:25 par Guillaume Louel

ARM l'a confirmé par un post de blog  : Intel Custom Foundry, l'activité fabrication tiers d'Intel, est désormais détentrice d'une licence ARM Artisan pour le 10nm !

Il faut rappeler qu'Intel est plutôt un cas à part dans le monde des semi-conducteurs, étant l'une des rares sociétés à disposer de ses propres usines, utilisées quasi uniquement pour la production de ses propres puces. La plupart des autres acteurs du marché ont migré vers la séparation de l'activité design d'un côté (on parle de sociétés fabless, c'est le cas dans le monde du GPU avec AMD et Nvidia), et de l'autre la fabrication dans des sociétés tierces spécialisées (on parle de foundry, la plus connue étant TSMC qui fabrique des puces pour de multiples clients).

Avec la difficulté de la mise au point des nouveaux process de fabrication, qui n'a fait qu'empirer ces dernières années, il est de plus en plus complexe pour une société à elle seule de justifier l'investissement nécessaire pour faire évoluer sans cesse ses usines. Qui plus est, la réduction de la taille des transistors fait que la capacité des usines augmente d'année en année, et qu'il faut disposer de très larges volumes de puces à produire, au risque de voir ses usines tourner à vide.

Un casse tête qui aura poussé plusieurs sociétés à se séparer de leurs usines (pour des raisons différentes) d'abord AMD en 2009 (créant GlobalFoundries) et plus récemment IBM (dont l'activité fabrication à été rachetée elle aussi par GlobalFoundries).

Depuis quelques années, en plus de fabriquer ses propres puces dans ses usines, Intel a décidé d'entrer très timidement, en 2010, sur le marché des fondeurs tiers en ouvrant son process à de petites sociétés qui n'étaient pas en concurrence directe avec ses produits (le premier client était Achronix, designer de FPGA en 22nm). D'autres clients ont suivi, principalement sur les FPGA, le client le plus connu d'Intel ayant été Altera... même si au final Intel aura décidé de racheter son client à la mi-2015 !

Pour Intel, la nécessité d'ouvrir ses usines est un casse tête. D'un côté, la société tente d'être présent sur tout les marchés, en déclinant le x86 - technologie "maison" sur laquelle la concurrence est limitée - à toutes les sauces et avec un soupçon de recyclage, que ce soit avec des produits serveurs spécialisés comme les Xeon Phi basés sur des Pentium pour leur première génération, ou les Quark dédiés à l'embarqué et utilisant une architecture de 486 datant d'une bonne vingtaine d'années !

Si l'envie de la société d'être présente sur tous les marchés est là, en pratique les succès ne sont pas systématiquement au rendez vous, Intel ayant par exemple massivement raté le marché des smartphones. Cumulé à la baisse continue des ventes sur le marché historique des PC, l'ouverture des usines à des clients tiers se dessine de plus en plus comme une nécessité pour Intel, même si l'avouer semble impossible à la société, qui continuait donc d'envoyer des signaux mitigés aux possibles futurs clients de son activité fabrication.

Avec l'annonce d'aujourd'hui, les choses sont - peut être - en train de changer puisque la prise de licence ARM par Intel est tout sauf anodine. Ce n'est pas la première fois qu'Intel fabriquera des SoC ARM, on l'avait vu avec Altera qui utilisait un core ARM dans un usage très spécifique.

La licence Artisan Physical IP  inclut en effet toutes les briques nécessaires pour la création de puces ARM de tout types. Il s'agit de tous les blocs de base avec des bibliothèques haute densité et haute performance de transistors logiques,et également tout le nécessaire pour les différents types de mémoire. La licence inclut surtout POP IP, qui est pour rappel l'idée qui fait le succès d'ARM : permettre l'utilisation de blocs interchangeables et compatibles pour créer des puces custom. Ainsi un client peut choisir d'utiliser des coeurs CPU dessinés par ARM (les gammes Cortex) ou créer ses propres coeurs (c'est le cas d'Apple et plus récemment de Nvidia), de choisir un GPU (que ce soit les Mali d'ARM, ou les populaires PowerVR d'Imagination Technologies), et également de choisir son fournisseur pour les interconnexions.

Concrètement, Intel va donc "porter" ces bibliothèques d'ARM aux particularités de son futur process 10 nm, ce qui permettra aux partenaires d'ARM de porter à leur tour - s'ils le souhaitent - leurs blocs POP IP. ARM et Intel travailleront conjointement pour le portage de deux futurs blocs CPU ARM Cortex-A (probablement un autre successeur 10nm de l'A72, voir l'annonce de l'A73 en 10nm lui aussi), la déclinaison que l'on retrouve dans les smartphones et tablettes.

Faut il y voir un virage pour Intel ? Fabriquer des puces ARM pour smartphones, ce qu'ils feront pour LG (nouveau client annoncé dans la foulée) va forcément à l'encontre des ambitions internes d'Intel d'imposer le x86 sur mobile. Car si un peu plus tôt dans l'année Intel avait décidé d'annuler sa nouvelle génération de SoC pour smartphones (Broxton et SoFIA), le constructeur continuait en interne à travailler sur les générations suivantes tout en essayant de développer dans l'intérim son activité modem (Intel aurait possiblement gagné le marché du modem du prochain iPhone). A l'heure où ARM augmente ses ambitions pour aller attaquer le marché juteux des serveurs, on peut se demander jusqu'où ira réellement l'ouverture d'Intel.


Un futur CPU ARMv8 24 coeurs de Qualcomm

En fabriquant des puces concurrentes, Intel s'ouvre à des comparaisons directes qui pourraient être assez défavorables à ses architectures x86, assez peu adaptées à la basse consommation. L'avantage supposé du process d'Intel, s'il existe, ne pourra plus jouer en la faveur de ses propres solutions pour compenser un éventuel déficit architectural. La structure de marges d'Intel, là aussi très différente de celle des fondeurs tiers, posera là aussi rapidement problème.

Qui plus est, en obtenant la licence Artisan d'ARM, Intel va devoir partager tous les détails techniques, y compris les plus secrets, de son process en ce qui concerne les règles et les dimensions exactes des transistors, ce qui va l'exposer là aussi à une comparaison directe avec les autres acteurs installés du milieu (comme TSMC et Samsung). Il faudra un peu de temps pour mesurer les conséquences concrètes de tout cela, car cet accord ne concerne que le 10nm, un process pour rappel en retard et qui n'est prévu chez Intel que pour la fin de l'année 2017 en version mobile. Les dernières nouvelles du 10nm, sur lequel Intel ne communique pas, n'étaient pour rappel pas particulièrement rassurantes avec l'arrivée possible sur sa roadmap de puces 14nm... pour 2018.

L'A9 d'Apple produit par Samsung et TSMC

Publié le 29/09/2015 à 17:57 par Guillaume Louel

La société Chipworks a confirmé via son blog une semi surprise : l'A9, le SoC ARM custom présent dans l'iPhone 6s d'Apple existe en deux variantes, une produite par Samsung et l'autre par TSMC. Selon Chipworks, ils ont trouvé ces deux puces dans « deux modèles identiques », tandis que iFixit a trouvé la version Samsung dans un iPhone 6s  et la version TSMC dans le modèle 6s Plus .


Les deux puces portent une référence différente (APL0898 et APL1022) et mesurent respectivement 96 mm2 et 104.5 mm2 (l'A8 en 20nm mesurait 89mm2 à titre de comparaison). Le nombre de transistor est inconnu, il était de 2 milliards sur l'A8. Le process de Samsung (partagé sous licence avec GlobalFoundries) est un 14nm FinFET tandis que celui de TSMC est un 16nm FinFET même si en pratique les nomenclatures ne veulent plus dire grand-chose. Samsung semble avoir tout de même un avantage de densité, quelque chose que l'on attendait, TSMC avait déjà annoncé dès l'année dernière qu'ils proposeraient une seconde version de leur process 16nm en 2016 (le 16 FinFET Plus) afin d'améliorer la densité et être plus compétitif avec la concurrence.


Au-delà de leurs tailles différentes, les puces semblent se comporter de manière similaire dans les premiers benchmarks que l'on a pu croiser, même s'il est encore tôt pour se faire une idée complète. Techniquement l'A9 est un SoC composé pour sa partie CPU d'un dual core basé sur une architecture ARM 64 bit custom et cadencé à 1.8 GHz accompagné de 3 Mo de cache L2. Un GPU issu de chez PowerVR avec « six cores » s'occupe de la partie graphique, le CPU et le GPU partageraient possiblement 8 Mo de cache L3. Apple annonçait +70% de performance CPU et +90% de performances graphiques par rapport à sa génération précédente gravée en 20nm par TSMC, des chiffres qui se vérifient à peu près dans les premiers benchmarks. Le SoC est de type PoP avec 2 Go de mémoire LPDDR4 au-dessus (et l'on notera pour l'anecdote la présence d'un contrôleur NAND PCIe/NVMe  dans l'iPhone 6s !)

Si l'on s'attendait à voir Samsung et TSMC produire la nouvelle génération de puces d'Apple, beaucoup pensaient que Samsung aurait récupéré la production de l'A9 et TSMC celle de l'A9X (la version iPad du SoC). En juillet dernier, TSMC avait cependant semé le doute indiquant avoir déjà réalisé ses premières livraisons de puces à ses clients.

Le choix d'utiliser deux process distincts pour produire une même puce est original de la part d'Apple qui n'a toutefois pas les mêmes problèmes que tout le monde. Le volume de l'iPhone (13 millions vendus en un weekend, 200 millions attendus sur l'année) permet à la marque de justifier aisément le cout double de développements séparés pour deux process différents (les process sont incompatibles dans leurs règles et les designs doivent être adaptés pour chaque fondeur).

Cela permet également d'améliorer le volume de disponibilité dès le lancement - un problème particulièrement important sur des process de toute dernière génération, il suffit de regarder la disponibilité anémique des Skylake d'Intel pour s'en convaincre - et de minimiser les problèmes de yields que pourraient avoir l'un ou l'autre de ses fournisseurs.

Top articles