Les derniers contenus liés aux tags Intel et Apple

Afficher sous forme de : Titre | Flux

Jim Keller rejoint... Intel !

Tags : AMD; Apple; ARM; Intel; Samsung; Tesla; Zen;
Publié le 26/04/2018 à 15:44 par Guillaume Louel

C'est une petite surprise, Jim Keller, ingénieur connu pour les plus gros succès d'AMD (Athlon, Athlon 64 et Zen) rejoint aujourd'hui Intel d'après nos confrères de Fortune .

Connu pour son rôle dans le design des DEC Alpha, il a également dirigé les équipes qui ont conçu les K7 (Athlon) et K8 (Athlon 64) pour AMD, avant de se retrouver suite à un rachat (de P.A. Semi) en charge de la future architecture ARM custom d'Apple. Il est retourné en 2012 chez AMD ou il s'est occupé de l'architecture de Zen.

Depuis, il avait tenu plusieurs postes, dont un passage éclair chez Samsung. Depuis deux ans, il avait rejoint Tesla en tant que Vice Président en charge du hardware custom embarqué. Suite au départ de Chris Lattner (ex-Apple), il avait également récupéré la direction d'Autopilot.

Intel n'a pas encore communiqué officiellement sur son rôle, le communiqué de Tesla indiquant simplement que "la passion principale de Jim était l'ingénierie de micoprocesseurs et qu'il rejoint une société ou il pourra de nouveau s'y consacrer exclusivement".

Des CPU Intel avec GPU... AMD !

Publié le 06/11/2017 à 15:48 par Guillaume Louel

C'est par un simple communiqué de presse  qu'Intel vient d'annoncer le presque impensable : un CPU Intel pour portable incluant un GPU signé ni plus ni moins que par son concurrent de toujours, AMD.

Le communiqué d'Intel est très avare en détails pour cette puce que l'on connaissait sous le nom de code KBL-G. Intel indique qu'il s'agit d'un CPU de gamme "H", à savoir ses puces 35-45W destinées aux portables les plus puissants. Le constructeur indique que cette puce fera partie de sa 8ème génération mais en pratique, le die ressemble fortement à un die Skylake/Kaby Kake GT2 avec quatre coeurs.

Côté GPU, on retrouve ce qu'Intel annonce comme un design "custom pour Intel". Nous mesurons la taille du die sur les photos à environ 220mm2, ce qui place ce GPU au niveau d'un Polaris, ou plus probablement d'un demi Vega. Ce die graphique est accompagné de sa propre mémoire HBM2. Sa quantité n'est pas précisée mais on peut penser qu'il s'agit d'une puce 4 Go interfacée en 1024-bit. La bande passante dépendra de sa fréquence, si on reste sur un demi Vega ce sera 242 Go /s.

Aucune information n'est donnée sur le TDP mais l'on peut légitimement s'attendre à quelque chose d'assez gourmand, Intel mettant en avant des performances discrete dans les jeux pour cette solution intégrée bien particulière.


Intel met en avant le gain de place pour l'intégration qui pourrait se traduire en théorie par des designs plus compacts (le constructeur indique que la hauteur moyenne des modèles H avec GPU est de 26mm), même si étant donné le TDP probable de ces solutions, la batterie dictera en grande partie le design de ces portables !

Cette annonce, qui reste malgré tout surprenante de la part des deux acteurs en question, ne l'est pas totalement quand l'on suit ce qui s'est passé ces dernières années avec les solutions IGP d'Intel. Car peu importe la manière dont Intel tourne la chose dans son blog, faire appel aujourd'hui à AMD est accepter la défaite de sa stratégie IGP sur le "haut de gamme" mobile à base d'IGP plus larges accompagnés de mémoire eDRAM, qui avait culminé avec l'annonce et le lancement (infinitésimal dans des NUC uniquement) des GT4e.

Côté AMD si l'on pourra toujours dire que le constructeur coupe l'herbe sous le pied de ses Raven Ridge, en pratique les puces ne seront pas placées face à face en termes de performances, le GPU (et le TDP total) étant significativement plus gros sur cette puce Intel.

D'un point de vue stratégique, l'alliance des deux constructeurs doit surtout être vue dans les conséquences des retards et des non livraisons des solutions IGP haut de gamme d'Intel qui ont conduit Apple a retarder le renouvellement de ses Macbook Pro, les modèles lancées disposant tous sur le haut de gamme d'un GPU AMD "discret" là ou des solutions intégrées "Intel only" existaient auparavant.

Cette puce résout donc avant tout un problème d'Apple, ce qui explique en grande partie que l'on ne s'attend pas à voir plus de deux SKUs annoncés. Elles devraient cependant se retrouver chez d'autres OEM, Intel n'indiquant simplement dans son communiqué que plus de détails seraient données au premier trimestre 2018. On peut légitimement penser que le constructeur pourrait profiter du CES pour en dire un peu plus.

Reste que si cette annonce résout à court terme un des problèmes concrets des IGP d'Intel, cela ne cache pas le fait que depuis Skylake lancé en 2015, nous n'avons vu aucun changement architectural graphique chez le constructeur dont la stratégie graphique semble quelque peu en panne depuis un long moment. Ce n'est pas le lancement limité de ces puces qui résoudra le problème plus largement, un accord plus global de licence entre les deux marques n'étant pas à l'ordre du jour.

Apple attaque Qualcomm et réclame 1 milliard

Publié le 23/01/2017 à 11:37 par Frédéric Cuvelier / source: Reuters

Entre Apple et Qualcomm, le torchon brûle. Le géant américain réclame un milliard de dollars à son fournisseur, auquel il reproche des composants facturés à des tarifs trop élevés, et le non-respect d'une remise que Qualcomm avait pourtant consentie à Apple.

Pour expliquer le pourquoi de ces plaintes, il convient de s'attarder sur les soucis d'ordre judiciaire auxquels Qualcomm est actuellement confronté. Début 2015, la Chine a infligé une amende de près de 975 millions de dollars à la marque, sans que celle-ci n'y trouve à redire. Fin décembre dernier, c'est au tour de la Korea Fair Trade Commission (Corée du Sud) de pénaliser Qualcomm, à hauteur de 850 millions de dollars. Et le 17 janvier dernier, la Federal Trade Commission (FTC) américaine a, elle aussi, attaqué la firme. A chaque fois, ce sont les mêmes arguments qui sont avancés : Qualcomm exercerait des pratiques anticoncurrentielles.

Ce qui est reproché au fournisseur, c'est un abus de position dominante généré par des contrats imposés aux fabricants de smartphones et liant l'utilisation de licences et d'approvisionnement de puces.

D'après ces différentes enquêtes, Qualcomm aurait abusivement utilisé son portefeuille de brevets comme levier commercial. La marque dispose en effet de brevets essentiels pour l'utilisation des réseaux mobiles dans les smartphones, et même une entreprise de renom comme Apple a été contrainte de négocier.

C'est ainsi que, de 2011 à 2016, le géant de Cupertino a accordé une exclusivité à Qualcomm quant à la fourniture de puces modem. En échange, ce dernier avait consenti une ristourne sur les tarifs d'utilisation des brevets.

Cette réduction, Qualcomm ne l'a jamais appliquée, la firme reprochant à Apple d'avoir participé à l'enquête menée par la Korea Fair Trade Commission en Corée du Sud.

Quoi qu'il en soit, cette exclusivité a empêché toute concurrence de s'exercer sur les appareils de la firme à la pomme.

La Commission Européenne travaille sur un dossier similaire, puisqu'elle reproche à Qualcomm d'avoir tenté d'évincer Icera du marché (entre 2009 et 2011) en vendant à perte ses puces, et en versant illégalement des sommes pour s'assurer l'exclusivité auprès d'un constructeur dont le nom n'a pas été dévoilé. Le Japon et Taïwan ont également ouvert des enquêtes concernant les pratiques de Qualcomm.

Abus de position dominante

En s'assurant de réduire ainsi à peau de chagrin la concurrence (Freescale, NXP, Infineon, Texas Instruments, Renesas Electronics ou STMicroelectronics en ont fait les frais, Nvidia -qui avait racheté Icera-, Broadcom ou Marvell ne sont jamais parvenus à percer), Qualcomm aurait alors été en mesure de renverser la machine avec de nouveaux accords. Puisqu'il devenait le premier fournisseur du marché (66% de parts de marché en 2014, 59% en 2015, largement devant Mediatek), il pouvait n'accepter de fournir ses puces qu'à la condition que les constructeurs acceptent de payer le prix fort pour l'utilisation de ses licences.

Enfin, cette position dominante permettait à Qualcomm de vendre ses puces à un tarif supérieur à celui du marché. Ce sont ces tarifs qu'Apple met également en avant dans sa plainte.

Qualcomm se défend trop tard ?

De son côté, Qualcomm a décidé de faire appel quant à la décision du régulateur coréen et dit vouloir contester "avec vigueur" l'accusation de la FTC américaine, dont elle estime qu'elle est « erroné, ne repose sur aucune base économique et s'appuie sur une mauvaise compréhension de l'industrie mobile. »

Mais les relations entre le fournisseur et les fabricants de smartphones semblent s'être considérablement détériorées depuis le début de ces enquêtes, et la réaction d'Apple n'est que le symbole d'un mouvement d'émancipation de plusieurs constructeurs vis à vis de Qualcomm.

MediaTek, bien sûr, mais aussi Intel sont ainsi en train de récupérer certains des marchés auparavant réservés à Qualcomm, tandis que Samsung a commencé à produire ses propres puces pour équiper ses smartphones. Et les chinois Spreadtrum, HiSilicon et Leadcore arrivent sur le marché pleins d'ambition. Résultat : à la fin du premier semestre 2016, Qualcomm devait "se contenter" de 50% du marché des modems cellulaires. Un chiffre qui pourrait encore baisser à l'avenir.

Polaris 11 en version mobile chez AMD

Publié le 28/10/2016 à 14:29 par Guillaume Louel

Sans trop de surprises, le lancement des MacBook Pro hier par Apple s'est accompagné, côté GPU, de puces AMD. Le constructeur a mis pour l'occasion en ligne un site mettant en avant ses nouvelles références .

Si l'on trouve des Polaris 10 mobiles  sur le site d'AMD avec des références comme les R9 M485X, les MacBook Pro ont droit à leur propre nomenclature, on parlera de Radeon... Pro . Cela permet aussi d'enlever le M, quelque chose qui fait écho à ce que l'on a vu chez Nvidia il y a quelques semaines.

Techniquement, il s'agit de puces Polaris 11, qui sont aussi utilisées côté desktop dans les Radeon RX 460. Il s'agit du "petit" Polaris qui propose 16 CU et un bus mémoire 128 bits. Vous pouvez retrouver plus de détails sur l'architecture des Polaris dans cet article.

Trois références sont annoncées, les Radeon Pro 460, 455 et 450. Nous avons récapitulé leurs caractéristiques sur le tableau ci dessous :

Nous avons ajouté dans la première colonne les caractéristiques de la RX 460, la configuration desktop de Polaris 11 afin d'avoir un point de comparaison, ainsi que le M9 370X qui équipait la génération précédente de MacBook Pro. L'arrivée du 14nm fait que l'on a droit a un choc générationnel. Par rapport à la configuration desktop, AMD réduit la fréquence, et exploite tout les CU du die Polaris 11 pour offrir environ 84% du niveau de performance théorique. La bande passante mémoire est inférieure de 10.4%.

Il est intéressant également de faire un petit aparté sur les CPU utilisés par Apple dans ces MacBook Pro, on retrouvera ces références (dans les configurations de base) :

La gamme d'Intel est compliquée, et celle d'Apple a peine moins puisque le constructeur propose un CPU 15 watts dans son modèle d'entrée de gamme 13 pouces (le modèle sans "touch bar" avec ironiquement une batterie encore plus grosse !). L'autre 13 pouces (avec "touch bar") utilise l'autre Core i5 28 Watts. Dans les deux cas il n'y a pas de GPU AMD sur ces configurations, et Apple utilise les GPU Intel avec 64 Mo d'eDRAM (GT3e). La marque annonce la même autonomie pour les deux modèles, ce qui est assez risible !

Le point qui nous intéresse le plus concerne la situation GPU sur les modèles 15 pouces. Contrairement à la gamme précédente de MacBook ou Intel était présent sur toutes les configs côté GPU (le M370X n'était disponible qu'en option sur une référence), ce n'est plus le cas ici. Les Core i7 utilisés sont dépourvus d'eDRAM et on retrouve systématiquement un GPU AMD.

Intel semble en effet avoir eu des problèmes de fabrication avec ses modèles GT4e, équipés de 128 Mo d'eDRAM. Le constructeur ne communique pas vraiment dessus mais les Skylake GT4e sont pratiquement absents des gammes mobiles des constructeurs (en cherchant, on en retrouve un dans un... NUC Intel !).

Difficile d'en connaître la raison exacte, mais le constructeur a qui plus est jeté l'éponge sur le GT4e pour la prochaine génération, Kaby Lake, comme nous vous l'indiquions un peu plus tôt. Cela reste un coup dur pour le constructeur dont la stratégie GPU reposait en grande partie sur l'apport proposé par cet eDRAM pour les hautes performances. Si l'eDRAM spécifiquement est en cause, il sera intéressant de voir quelle alternative le constructeur choisira pour la remplacer.

Ou si, plus simplement, il se contentera d'être de nouveau absent du marché du GPU mobile milieu/haut de gamme.

TSMC et InFo PoP pour l'A10 de l'iPhone 7

Publié le 19/09/2016 à 14:38 par Guillaume Louel

Ce week end, la société Chipworks a procédé à son traditionnel "teardown" des puces incluses dans l'iPhone 7 , en se concentrant particulièrement sur le SoC A10 d'Apple.

Rappel sur l'A9

Avant de regarder l'A10, revenons un instant sur l'A9 inclus l'année dernière dans l'iPhone 6S. Il avait la particularité d'être sourcé en parallèle chez Samsung et TSMC, quelque chose de quasi unique pour des puces haut de gamme sur des process de dernière génération, ce qui nous avait permis d'effectuer quelques comparaisons.


Les deux A9 de l'iPhone 6S (2015)

La différence la plus visible était la densité des deux process : l'A9 "Samsung" mesurant 96mm2, contre 104.5mm2 pour la version TSMC. A l'époque nous n'avions pas de certitudes sur les variantes exactes des process utilisées. Depuis, Chipworks a confirmé qu'il s'agissait bien du 14LPE chez Samsung. Le cas de TSMC est plus compliqué, Chipworks ne répondant pas (gratuitement) à la question. Les rumeurs laissent penser qu'il ne s'agissait pas d'un simple 16FF, mais d'une version "custom" empruntant en partie au process 16FF+.

Outre la densité, les tests pratiques avaient suggéré une différence de consommation à pleine charge avec un avantage pour la puce de TSMC. De quoi laisser penser que son process avait besoin de tensions inférieures à celui de Samsung pour obtenir les mêmes performances.

Depuis, Chipworks a la aussi répondu partiellement à la question suggérant que le problème se situerait pour le process de Samsung sur le rapport puissance/performances de ses NMOS . On ne sait pas si le problème persiste sur la version 14LPP qui a remplacé le 14LPE.

L'A10 : 16FFC TSMC

Première différence par rapport à l'année dernière, l'A10 semble produit cette année exclusivement par TSMC. Il est plus large que l'A9, mesurant 125mm2 pour 3.3 milliards de transistors annoncés. Côté process il s'agit du 16FFC (ou d'une variante) de TSMC, la troisième version "optimisée" du 16nm de TSMC. Annoncée en janvier dernier, le C signifie "Compact" et ce process vise avant tout les usages basses consommation tout en réduisant de manière significative les coûts de fabrication.

D'après Chipworks, l'utilisation des bibliothèques optimisées permet une bien meilleure utilisation du die, avec une compacité équivalente à celle des process TSMC précédents. Chipworks estime que la même puce aurait demandé 150mm2 en 16FF. Etant donné que 70 tapeouts de clients de TSMC sont attendus sur ce process cette année, les progrès de densité du 16FFC devraient profiter assez largement, on attendra de voir les constructeurs qui annonceront des puces l'utilisant.

 
 

Chipworks note également que l'A10 est beaucoup moins haut que les générations précédentes. Comme beaucoup de SoC, il est de type PoP et embarque la mémoire au dessus du die logique. Cependant plutôt que d'empiler les quatre dies de mémoire (2 Go de LPDDR4 Samsung sur l'A10 de l'iPhone 7), ils sont placés côte à côte.

Qui plus est, comme nous le supposions la puce utilise le nouveau packaging InFo de TSMC (dans sa version InFo-PoP) pour relier les dies entre eux.

big.LITTLE et performances

Côté performances les premiers benchmarks synthétiques évoquent 40% de gains pour le CPU ARM par rapport à l'année dernière, tout en restant en 16nm.

Pour arriver à ce gain, Apple augmente d'abord significativement la fréquence, passant de 1.85 GHz sur l'A9 à 2.35 GHz sur l'A10. Sur ce point, la marque exploite à la fois la marge notée de son process l'année dernière (on peut supposer facilement que l'A9 aurait eu une fréquence plus élevée s'il avait été sourcé uniquement chez TSMC) et les gains apportés par le 16FFC.

Ce gain de 27% de fréquence est accompagné de changements au niveau de l'architecture. Ceux ci ne sont pas encore connus, au delà du nom Hurricane, mais Chipworks note que le cluster CPU prend une place plus importante sur le die, 16mm2 face à 13mm2 sur l'A9, malgré l'utilisation d'un process plus compact.

Il est cependant difficile de se baser sur cette différence de taille étant donné que l'A10 est en réalité un quad core big.LITTLE dans la nomenclature ARM. En plus des deux coeurs hautes performances à 2.35 GHz (big), deux coeurs basse consommation à 1.05 GHz (LITTLE) sont également présents sur le die (leur emplacement exact est pour l'instant inconnu, ce qui vaut les points d'interrogation sur le diagramme au dessus).

Contrairement à d'autres implémentations dans l'écosystème ARM, les applications ne peuvent pas utiliser en simultanée les deux blocs de coeurs, le passage de l'un à l'autre étant transparent pour elles (géré par la puce et l'OS). L'intérêt de cet arrangement est bien entendu d'augmenter l'autonomie en ne sollicitant les coeurs haute performances que lorsque nécessaire.

Déjà largement en avance côté performances sur le reste de l'écosystème ARM, l'A10 commence à devenir embarrassant même pour Intel, dépassant un Core M Skylake en monothread sous Geekbench 4 (voir ici  et là  ), avec un "TDP" au moins deux fois inférieur (et sans mécanisme Turbo).

Intel se consolera tout de même de sa présence dans une partie des iPhone 7 car c'est l'autre information de Chipworks, la société confirme qu'une partie des modèles utilise un modem Intel XMM 7360 (certains modèles intègrent un modem Qualcomm X12). Très en retard, le XMM 7360 est un modem LTE 450 Mb/s Cat 10 certes dessiné par Intel, mais fabriqué selon toutes vraisemblances comme ses prédécesseurs... par TSMC.

Top articles