Les contenus liés aux tags AMD et APU
Afficher sous forme de : Titre | FluxCES: TDP de 17W pour l'APU Trinity !
AMD montre Trinity et le 28nm
Focus: AMD A8-3850, roi de l'undervolting ?
Quelques détails sur Hondo
AFDS: Le GPU de Trinity dérivé des HD 6900
AFDS: Moins de 3 et 2W pour les APU de 2013/14
Sans dévoiler les traditionnels nouveaux noms de code qui accompagnent les roadmaps, AMD a présenté ses plans concernant les APU basse consommation qui succèderont à Brazos 2.0, basée sur les cores Bobcat, ainsi qu'à Temash basée sur les cores Jaguar.

Pour rappel, en 2013 c'est l'APU Temash qui sera chargée du marché des tablettes. Elle pourra embarquer jusqu'à 4 cores Jaguar (AMD parlait précédemment de 2 cores), un GPU dérivé de l'architecture GCN et sera proposée au format FT3 BGA avec un TDP variant entre 3.6W et 5.9W.

En 2013, une troisième génération de cores ultra basse consommation sera introduite avec pour objectif de pouvoir réduire la consommation totale de l'APU à moins de 3W, alors que la quatrième génération de cores aura pour objectif de faire passer l'APU sous les 2W en 2014. De quoi pouvoir proposer des composants plus intéressants pour les tablettes et enfin entrevoir une présence dans des smartphones ?
AFDS: ARM Cortex A5 dans les futures APU AMD
Il y a quelques mois, AMD avait expliqué être en train de réorganiser ses méthodes de développement pour atteindre un niveau de modularité similaire à celui des SoC. En plus de réduire les coûts à terme, une telle approche permet de gagner en flexibilité et de pouvoir intégrer plus facilement des technologies tierces à ses produits. AMD ayant précisé vaguement ne pas être forcément limité à l'ISA x86, la conclusion logique était que des cores ARM ou dérivés de son jeu d'instruction feraient leur apparition dans de futurs produits AMD.

C'est ce qui aura lieu dès l'an prochain, mais pas spécialement sous la forme que certains attendaient, telle qu'un SoC combinant cores ARM et GPU Radeon. Si un tel produit pourrait voir le jour dans le futur, ce n'est pas la première utilisation visée par l'utilisation de cores ARM. AMD souffre actuellement de l'absence de technologie de sécurisation dans ses plateformes, telle que la Trusted Execution Technology d'Intel (TXT), qui permet de sécuriser certains systèmes de paiement, DRM et autres infrastructures professionnelles et est vouée à se généraliser à l'avenir. Développer en interne une telle technologie est complexe et coûteux, d'autant plus qu'il faut ensuite convaincre tout l'écosystème de la supporter.
Malheureusement pour AMD, TXT ne fait pas partie de la licence x86 et l'accès à cette technologie n'est pas automatique. Intel ayant probablement rechigné à transférer sa technologie sous licence, ou le coût de cette celle-ci étant prohibitif, AMD a décidé de se tourner vers TrustZone d'ARM. Il s'agit de la plateforme concurrente principale de TXT et elle est présente au sein de tous les cores Cortex A. Elle repose sur une extension du jeu d'instruction d'ARM et ne peut donc pas être transposée facilement dans un core x86.

AMD a donc décidé d'inclure un core ARM dans ses futures APU, à commencer par Kabini et Temash qui succèderont à Brazos 2.0 et Hondo l'an prochain, avant de le généraliser à l'ensemble de ses produits. AMD a opté pour un Cortex A5, qui est le plus petit core de la famille : 0.53mm² en 40nm soit en principe moins de 0.30mm² en 28nm. Son intégration prendra probablement un petit peu plus de place mais à l'échelle de la puce elle aura un impact insignifiant.
AMD n'a pour l'instant pas donné plus de détails sur l'implémentation, ni sur la manière dont ce core ARM interagira avec les cores x86 dont il devra contrôler l'exécution, et encore moins sur l'exposition directe éventuelle de ce core qui pourrait par exemple être exploité par un antivirus. Une utilisation qui permettrait par exemple à AMD de répondre à l'intégration dans les CPU Intel d'optimisations destinées aux logiciels McAfee.
AFDS: 1 Teraflops pour l'APU Kaveri
Dans la vision d'AMD concernant le calcul hétérogène, les APU jouent comment vous vous en doutez un rôle important, d'une parte parce qu'elles permettent de démocratiser la technologie et d'autre part parce qu'elles autorisent une communication plus efficace entre les cores CPU et GPU.
En 2013, l'APU Kaveri apportera de nouvelles évolutions importantes pour le calcul hétérogène et profitera en partie pour cela de l'architecture graphique GCN introduite dans les Radeon HD 7000. Si AMD ne rentre pas encore dans ces détails, les objectifs en termes de puissance de calcul ont été dévoilés lors de l'AFDS : 1 Teraflops pour l'ensemble CPU/GPU.

Par rapport à Trinity et l'A10-5800K qui culmine à 738 Gflops, il s'agit d'un gain de 35% qui proviendra en toute logique avant tout du GPU dont nous pouvons supposer qu'il passera de 384 à 512 unités de calcul. Notez que l'architecture GCN étant plus efficace que l'architecture VLIW4 de Trinity, les gains devraient être en pratique supérieurs à ce que ne laissent penser ces premiers chiffres.
AMD A10-5800K et A8-5600K officialisés
Les spécifications des APU Trinity dont nous nous faisions écho en février dernier sont aujourd'hui officiellement confirmées.
Cette page du site AMD officialise l'entrée en service de 4 APU, les A10-5800K, A10-5700, A8-5600K et A8-5500.

Conformément aux attentes on voit donc apparaître un APU au coefficient débloqué par série: un A8 et un A10 de série K à TDP de 100W, auquel répond un APU de même famille au coefficient bloqué et au TDP de 65W.
Comme sur les A-Series Llano c'est la configuration du GPU qui fait la gamme, les A10 ayant 384 unités contre 256 sur les A8. Ces GPU sont associés à 2 modules de 2 coeurs de type Piledriver. Les quatre APU fonctionnent sur socket FM2 et devraient faire leur apparition sur les étalages cet été.
AMD lance les APU Trinity mobiles
C'est aujourd'hui que le constructeur lance sa nouvelle génération d'APU A-Series. Utilisant pour nom de code Trinity, ces APU viennent remplacer la génération Llano lancée en juin dernier (voir notre test de la plateforme desktop). A l'image de ce que l'on avait pu voir à l'époque, AMD lance dans un premier temps les plateformes Trinity mobiles.
Côté fabrication, AMD reste sur un process 32nm comme pour les Llano, même si le constructeur profite aujourd'hui des progrès réalisés par GlobalFoundries sur ce process qui est arrivé à maturité. La taille du die évolue passant de 228 mm2 à 246, le nombre de transistors quand à lui passe de 1.178 à 1.303 milliards. Du côté des TDP, si côté desktop on retrouvera toujours des configurations entre 65 et 100 watts, les versions mobiles qui étaient disponibles dans des versions 35 et 45 watts sont désormais disponibles en version 17, 25 et 35 watts. Les chipsets restent de leur côté inchangés.

Les nouveautés ne s'arrêtent cependant pas au TDP puisque AMD a à peu près tout changé. D'abord côté CPU, exit les cœurs K10.5 hérités des Athlon II, nous avons droit ici à l'architecture Piledriver, qui pour rappel est la 2eme génération de l'architecture Bulldozer utilisée sur les FX. Les APU Trinity intègrent donc un ou deux modules pour proposer deux à quatre cœurs actifs.

L'architecture VLIW4 des Cayman se retrouve dans les Trinity
Côté GPU si on parlera de HD 7000, en pratique il s'agit bel et bien de l'architecture VLIW4 utilisée dans les Cayman (Radeon HD 6900). Llano intégrait un GPU Redwood de type VLIW5 pour rappel. AMD segmente les performances graphiques de sa gamme en limitant le nombre de shaders cores actifs d'une puce à l'autre, ainsi les APU A4 auront droit à 128 shaders core, les A6 à 192, les A8 à 256 et les A10 à 384. Notez que le dual graphics sera toujours de la partie avec la possibilité de cumuler les performances d'un GPU additionnel à celles de l'APU. AMD n'a cependant pas détaillé dans ses présentation l'approche marketing qui sera utilisée (celle utilisée pour Llano étant relativement peu claire pour qui ne connait pas sous le bout des doigts la gamme du constructeur).

Dernière nouveauté notable, AMD choisit également d'intégrer un turbo qui fonctionne à la fois sur les fréquences GPU et CPU. Ainsi, dans le cas d'un A10-4600M, la fréquence de base de 2.3 GHz peut monter à 3.2 GHz si seul un seul cœur x86 est stressé et que le GPU est au repos. Si tous les cœurs sont stressés, le mode turbo se contente de 2.7 GHz. Si cependant une tâche GPU est active et que le GPU passe à sa fréquence 3D, on se contentera de 2.3 GHz pour les quatre cœurs.

La gamme mobile se contente pour l'instant de cinq références et seuls les modèles A6, A8 et A10 sont annoncés. En plus de trois références 35W, on retrouve un A10-4655M et un A6-4455M, processeurs quadruples et doubles cœurs ayant des TDP respectifs de 25 et 17W. Sur le papier la mise à jour de la gamme APU par AMD semble intéressante même si le remplacement des cœurs CPU par des modules aura un impact sur les performances. L'architecture Piledriver et le support de la mémoire 1600 MHz suffiront-ils à compenser cela ? Des questions sur lesquelles nous reviendrons d'ici quelques jours avec un test complet de la plateforme Trinity mobile.


