Les derniers contenus liés aux tags 16/14nm et 7nm

12nm et EUV à 7nm pour TSMC

Publié le 13/01/2017 à 13:46 par Guillaume Louel

TSMC a publié hier ses résultats financiers pour le dernier trimestre 2016. Le fondeur taiwannais a annoncé pour ce trimestre un revenu brut de près de 7.8 milliards d'euros, en hausse de 28.8% par rapport à la même période sur l'année précédente. Sur la totalité de l'année 2016, TSMC aura augmenté son revenu de 12.4% par rapport à 2015.

Pour 2017, TSMC s'attend à voir ses revenus progresser de "seulement" 5 à 10% (ce qui n'a pas manqué de décevoir les analystes financiers). Lors de la présentation des résultats, quelques informations supplémentaires ont été données.

Morris Chang, Chairman de TSMC s'est lancé dans quelques prédictions pour le marché 2017, s'attendant à voir le marché des smartphones grimper de 6% en unités, et celui du PC se contracter de 5% en unités également (il envisage également un déclin de 7% sur les tablettes tout en voyant le marché Internet of Things progresser de 34%).

Sur le 16/14nm, Morris Chang estime que la part de marché de TSMC est entre 65 et 70%, en dessous de ses attentes (TSMC dispose encore de 80% du marché sur le 28nm par exemple). Toujours poétique, le Chairman voit dans le 10 et le 7nm un "ciel bleu" par rapport à la compétition.

Quelques détails plus techniques ont été donnés, notamment par rapport à un "12nm" qui avait été évoqué ici ou là dans la presse. En pratique, TSMC travaille sur une nouvelle version de son process 16nm (une quatrième après les 16FF, 16FF+ et 16FFC) qui incorpore des améliorations importantes de densité. L'appellation commerciale exacte n'a pas été donnée, et on ne sait pas exactement quand elle sera disponible. On s'attendra dans quelques semaines à une annonce officielle, même si TSMC à confirmé aujourd'hui l'existence de ce "12nm".

Pour le 10nm, si le début de production est bien en cours, le gros du volume se situera sur la seconde partie de l'année (coïncidant avec le lancement des prochains iPhones dont le SoC utilisera le 10nm TSMC).

Sur le 7nm, plus de 20 sociétés travailleraient déjà sur des designs pour l'année prochaine, un chiffre qui devrait doubler dans l'année. Sur la question du 7nm en lui même, nous nous étions interrogés sur la manière dont le constructeur augmenterait la densité. Pour rappel, TSMC s'engage à lancer la production du 7nm dès la fin de l'année, il s'agira du node qu'utiliseront la majorité de ses clients, le 10nm devrait avoir une durée de vie courte et être réservé à quelques gros clients.

Le 10nm rappelle d'une certaine manière le 20nm de TSMC, lui aussi utilisé par des gros clients uniquement avant un passage rapide au 16nm. Cependant, avec une augmentation de la densité de 1.63x entre le 10 et le 7nm, la recette utilisée est plus complexe que pour le passage 20/16nm (qui ne proposait qu'une augmentation de densité de 1.15x). Nos confrères de SemiWiki, très au fait des détails, ont confirmé  il y a quelques jours que des changements sur les tailles minimales des cellules sont en grande partie à l'origine des gains de densité et que pour réduire les coûts, TSMC évitera au maximum de généraliser le quadruple patterning (SAQP). Le 10 et le 7nm auront donc bel et bien des similarités techniques.

Pour essayer d'y voir un peu plus clair, et étant donné que plus aucun constructeur ne suit de règles équivalentes pour parler de densité, SemiWiki a publié ce graphique intéressant qui montre une "estimation" de la densité comparée de tous les fondeurs :

D'après SemiWiki, le 10nm d'Intel et le 7nm de TSMC auraient, après ajustement, une densité comparable. Il s'agit bien entendu d'estimations qui valent ce qu'elles valent, vous pouvez retrouver l'explication de la formule utilisée ici , mais elles donnent un bon ordre d'idée de ce à quoi il faut s'attendre (un seul bémol à cette analyse : les prévisions concernant GlobalFoundries nous semblent excessivement optimistes, en grande partie à cause des annonces de GlobalFoundries qui nous paraissent déconnectées de leur capacité d'exécution ces dernières années).

En pratique le 10nm de TSMC disposera tout de même d'une meilleure densité que l'actuel 14nm d'Intel, TSMC pourra donc se targuer d'avoir dépassé Intel côté process lorsque les premiers produits 10nm seront disponibles plus tard dans l'année. Et si Intel reprendra l'avantage avec "son" 10nm, TSMC sera effectivement - et pour la première fois - à parité dès la fin de l'année en lançant la production de son 7nm. Une situation qui durera un moment, et pour la première fois les constructeurs "fabless" pourront disposer d'un process équivalent en densité à celui d'Intel.

On notera enfin, concernant le 7nm, que TSMC a confirmé qu'ils inséreront l'EUV au bout d'un an de production à 7nm (soit fin 2018) pour créer une nouvelle version du 7nm (à l'image des multiples 16nm). Des propos plutôt optimistes concernant la lithographie EUV qui sera, Mark Liu le rappelle, indispensable à 5nm. Et un timing qui coïncide exactement avec le lancement de la production du 7nm de Samsung qui utilisera elle, dès le début, l'EUV !

Des détails sur le 7nm à l'ISSCC 2017

Publié le 15/11/2016 à 16:29 par Guillaume Louel

La conférence ISSCC (International Solid-State Circuits Conference) se tiendra pour son édition 2017 du 5 au 9 février à San Francisco, et nos confrères d'EEtimes  ont eu accès à l'avant programme.

Comme tous les ans les acteurs du milieu des semi conducteurs y présenterons leurs nouveautés, et l'on notera que TSMC et Samsung présenterons leurs cellules SRAM (utilisées notamment pour la mémoire cache dans les puces). L'année dernière, Samsung avait proposé deux versions distinctes pour son process 10nm, optimisées pour la densité ou les performances, de 0.040 µm² et 0.049 µm².

D'après nos confrères, TSMC présentera une cellule SRAM 7nm de seulement 0.027µm², tandis que Samsung présentera une cellule SRAM 7nm de 0.030µm², mais fabriquée en EUV. D'après Samsung, l'EUV permettrait de diminuer la tension minimale nécessaire de 39.9mV (TSMC indique aussi des optimisations basse tension, on attendra la conférence pour comparer l'impact ou non de l'EUV).

La SRAM est un composant fondamental des puces et sa taille permet en général de se donner une bonne idée des process. Cependant il faut être assez méfiant, les constructeurs annonçant parfois des "records" de densité qu'ils n'utilisent pas forcément en production. Nous avons rapporté dans le tableau ci dessous les chiffres les plus bas (correspondant aux bibliothèques "hautes densité") pour TSMC, Samsung et Intel :

Par rapport au tableau, on notera qu'Intel n'utilise pas cette SRAM haute densité dans ses processeurs, mais de la SRAM 0.059 µm². Même en prenant cela en compte, Intel garde la meilleure densité à 16/14nm pour la SRAM. Le constructeur ne fournit pas encore d'infos sur ses futurs process.

TSMC n'a pas donné non plus de chiffre exact pour son 10nm, estimant simplement 50% de réduction par rapport à son 16nm sur la SRAM, ce qui nous vaut un chiffre entre parenthèses. Selon toutes vraisemblances, et conformément aux autres annonces sur la densité (2.1x d'après le constructeur), on estimera que TSMC devrait avoir une SRAM d'une taille légèrement inférieure à celle de Samsung.

Intel ne devrait pas effectuer d'annonce sur ce sujet lors de l'ISSCC, ce qui est assez dommage. Le constructeur devrait présenter les FPGA Altera Stratix 10 (14nm) tandis qu'AMD proposera une présentation plus en détails de Zen.

On notera aussi que Western Digital/Toshiba, ainsi que Samsung, présenterons des puces 3D NAND 512 Gbit TLC 64 couches. Dans le cas de Samsung, cette puce avait été annoncée cet été, plus de détails techniques devraient être disponibles. Pour Western Digital/Toshiba, cette puce avait été évoquée cet été comme objectif.

On notera que nos confrères pointent à raison un grand absent : une fois de plus, ni Intel, ni Micron, n'effectueront de présentation technique de leur mémoire 3D Xpoint !

16nm à l'heure, EUV en retard pour TSMC

Tags : 10nm; 16/14nm; 7nm; ASML; TSMC;
Publié le 17/07/2015 à 18:05 par Guillaume Louel

TSMC a également annoncé ses résultats financiers. La société a enregistré pour le second trimestre un chiffre d'affaire de 6.62 milliards avec une marge brute atteignant 48.5%. Par rapport au même trimestre l'année dernière, cela représente une hausse de 12.2% du CA (et 33% pour les bénéfices).

Au-delà des chiffres, TSMC a donné quelques détails intéréssants, confirmant d'abord la cession de sa participation dans ASML qui avait été annoncée en janvier, en assurant que cela ne changeait strictement rien à ses liens avec la société basée aux Pays-Bas. TSMC a également cédé 5% de sa participation dans Vanguard (VIS), un spinoff de TSMC proposant des services spécialisés. TSMC garde malgré tout le contrôle de 28% de VIS, étant toujours l'actionnaire majoritaire.

Le 28nm continue de représenter 27% des revenus tandis que le 20nm aura représenté 20% des revenus sur le second trimestre. TSMC note cependant que côté smartphones, les inventaires chez les constructeurs sont importants, particulièrement sur les produits d'entrée et milieu de gamme faute d'augmentation de la demande en Chine et dans les marchés émergeants. Le dollar elevé est l'une des causes mises en avant, tout comme les situations économiques locales. Tous ces facteurs font que TSMC s'attend à voir une hausse de son activité possiblement plus mesurée qu'ils ne le pensaient.


La nouvelle la plus importante est la confirmation que le 16nm est bel et bien en cours de production et que les premières puces ont été livrées ce mois-ci. Sur le 16nm, TSMC indique que la montée en puissance de son process sera extrêmement rapide, plus rapide que le 20nm profitant du BEOL (la seconde partie du process qui gère les interconnexions, plus de détails ici ) commun. Les taux de défauts sont annoncés comme extrêmement bas, et la courbe de réduction des défauts est la meilleure jamais obtenue par TSMC.

La société pense rafler en 2016 la majorité du marché 16nm. Les premiers clients en volume de TSMC sur le 16nm sont très probablement Apple (qui utiliserait aussi Samsung selon les rumeurs pour son A9) et Qualcomm qui ont en général la priorité sur les nouveaux nodes, même si AMD a annoncé avoir effectué deux tapeout sur ce process (sans préciser s'il s'agissait bien de TSMC, ou de GlobalFoundries).

TSMC a également profité de l'occasion pour parler du 10 et du 7nm. Selon TSMC les progrès réalisés sur le 10 nm sont « très encourageants » et continue de prévoir un début de la production en volume fin 2016. Une date qui, si elle est effectivement tenue, placerait potentiellement la sortie de produits 10nm en volume chez les très bons clients de TSMC avant même la sortie de Cannonlake chez Intel. Encore faut-il que TSMC tienne ses délais, bien évidemment, mais sur les deux derniers nodes cela a plutôt été le cas. Techniquement par rapport au 16 FinFET+ (la version la plus avancée de son process FinFET), le 10nm apporte 15% de vitesse à puissance égale, ou 35% d'économie d'énergie à vitesse égale. La densité est 2.2x celle du 16 FinFET+.

On notera avec intérêt que pour le 10nm, TSMC annonce des tape out sur un tas de secteurs, y compris ce qu'ils appellent high-performance computing, sous-entendu des CPU/SoC. Morris Chang, le chairman de TSMC est même allé un peu plus loin indiquant qu'il pense que TSMC va jouer un rôle important sous peu dans les marchés notebook et serveur, à condition de lier trois acteurs. Non seulement une fonderie (TSMC), ARM, mais aussi des sociétés capables de faire des designs custom « haute performance ».

TSMC a également évoqué le 7nm, s'attendant à lancer la qualification de son process au premier trimestre 2017, soit seulement cinq trimestres après la qualification attendue du 10nm. Le fondeur n'est pas très précis sur la technique, indiquant profiter de la maturité du 10nm pour mettre en place le 7nm, ce qui sous entends peut être que de la même manière qu'ils l'ont fait pour le 16nm avec le 20nm, TSMC pourrait garder le BEOL du 10nm sur le 7nm. Cela expliquerait très certainement le délai très réduit entre les qualifications.

Concernant l'EUV, Mark Liu, l'un des Co-CEO a indiqué que la porte était toujours ouverte et qu'ils travaillaient activement avec ASML, mais qu'il restait encore des challenges à résoudre, particulièrement autour des masques. Il a également indiqué que le 7 nm n'utiliserait « probablement pas » l'EUV dans un premier temps mais qu'il pourrait être introduit dans un second temps, et qu'il serait introduit dès le début à 5nm. Un changement de position – et une mauvaise nouvelle pour ASML - par rapport au discours habituel qui indiquait que l'EUV serait possiblement introduit dans un second temps à 10nm et dès le début à 7nm.

Intel densifie sa SRAM 14nm et parle du 10 et 7nm

Tags : 10nm; 16/14nm; 7nm; ASML; Intel;
Publié le 23/02/2015 à 14:25 par Guillaume Louel

Intel profite de la conférence ISSCC  (International Solid-State Circuits Conference) qui se tient cette semaine à San Francisco pour effectuer plusieurs annonces autour de ses process de fabrication. Le constructeur a donné à la presse un avant-goût de ses annonces, deux d'entre elles ont particulièrement retenu notre attention.

En premier lieu on retiendra la présentation d'un bloc de SRAM particulièrement optimisé pour la densité avec une taille de cellule de seulement 0.0500 µm², un record. Il s'agit d'une amélioration importante par rapport à la dernière présentation du constructeur qui évoquait des tailles de cellules de 0.0588 µm² lors du dernier IEDM  fin 2014.


Il s'agit en pratique d'une puce de 84 Mbit (10,5 Mo) de SRAM optimisée pour un fonctionnement à 1.5 GHz à 0.6 Volts, même si en montant la tension d'activation à 1 Volt on peut atteindre 3 GHz. Si elle montre le bond en avant en densité lié au process, cette annonce tient surtout de la performance technique, le constructeur annonçant souvent des cellules de SRAM spécialisées et différentes de ce que l'on retrouve dans les produits commerciaux. Le constructeur avait ainsi annoncé pour le node 22 nm des cellules de 0.092 µm² optimisées pour la densités, mais ce sont des cellules de 0.108 µm² optimisées cette fois ci pour leur rapport performance/puissance qui sont utilisées dans les processeurs.

On retiendra enfin la description des challenges rencontrés au delà du 10 nm. Intel se félicite tout d'abord d'avoir atteint un coût par transistor plus faible qu'attendu sur le 14 nm, un chiffre toujours difficile à mettre en perspective qui plus est cette fois-ci avec les retards engendrés et les lancements décalés !

 
 

En ce qui concerne le 10nm, il semblerait que le constructeur ait - sans surprise - opté pour sa solution à lithographie à immersion « classique » en 193nm, et non pour une solution EUV comme Mark Bohr nous l'avait déjà indiqué en 2012 à l'occasion d'une interview. En fin d'année dernière TSMC avait également indiqué que l'EUV ne serait pas a l'heure pour leur propre process 10 nm.

Intel ne s'est pas encore étendu sur les changements techniques de son process 10 nm mais il avait été évoqué précédemment un recours plus fort au multiple patterning (exposition multiples). Déjà utilisé sporadiquement sur certaines couches critiques, son utilisation devrait être généralisée.

En ce qui concerne le 7 nm, un changement de la forme des structures (remplacer par exemple les FinFET par des microfils) et des matériaux utilisés (par exemple Arséniure de Gallium-Indium [InGaAs] ou Phosphure d'Indium [InP]) est envisagée mais Intel n'est pas encore prêt a livrer les détails de sa recherche.

On notera enfin que le constructeur indique avoir appris de ses problèmes concernant le 14 nm en ajoutant de nouvelles procédures internes pour détecter les problèmes rencontrés, particulièrement autour des masques qui semblent avoir posé beaucoup de problèmes au constructeur et être en partie coupable des retards. Le fondeur annonce qu'il a pour objectif d'avoir une transition vers le 10nm deux fois plus rapide que celle du 14nm, mais vu l'introduction de produits 14nm au compte-goutte 18 à 24 mois après le passage au 22nm on ne sait pas vraiment quels sont l'intervalle et la date de départ pris en compte pour le 14nm. Toujours est-il que le 10nm devrait pour sa part débarquer en 2016 !

Top articles