Les derniers contenus liés aux tags ASML et 5nm

TSMC confiant sur l'EUV en volume pour 2019

Publié le 30/01/2018 à 20:01 par Guillaume Louel

TSMC a également annoncé ses résultats un peu plus tôt dans le mois, l'occasion d'une conférence auprès des analystes qui aura été la dernière de Morris Chang, le Chairman et fondateur de TSMC. Il avait annoncé en fin d'année dernière qu'il prendrait sa retraite en juin 2018.

Sur l'année 2017, TSMC a réalisé un chiffre d'affaire de 32.1 milliards de dollars pour un résultat net de 11.2 milliards. Des chiffres qui progressent modestement en apparence par rapport à 2016, +3.1% et +2.6% en New Taiwan Dollar (+9.1% en dollars US, avec les effets du change).

On notera que sur le dernier trimestre, le 10nm (utilisé quasi exclusivement par Apple) représente 25% du chiffre réalisé ce qui est assez massif. Sur 2017, le 10nm aura compté pour 10% du chiffre de TSMC. Les technologies "avancées", à savoir le 28nm et les nodes suivant ont compté pour 58% du chiffre d'affaire engrangé par les ventes de wafers, contre 54% en 2016.

Les futurs process ont été évoqués, le 5nm (qui utilisera l'EUV chez TSMC) est prévu pour une production risque au premier trimestre 2019. TSMC indique avoir déjà atteint de bons yields sur des puces test de SRAM, et le niveau de développement est aussi avancé que pour le 7nm.

En ce qui concerne l'EUV, TSMC s'est félicité d'avoir obtenu des yields élevés en 7nm+ (la version EUV du 7nm de TSMC qui sera introduite dans un second temps) et 5nm. La question des sources lumineuses semble en passe d'être réglée, TSMC indiquant utiliser actuellement des sources 160 watts (on était à 125W l'année dernière), tandis que les sources 250W (annoncées par ASML l'été dernier) sont installées en voie de production. TSMC dit également être optimiste autour des questions compliquées autour du pelliculage avec des défauts bas. La société s'attend donc à ce que la production en volume du 7nm+ en EUV soit lancée au second trimestre 2019, et en 2020 pour le 5nm.

Le 7nm+ est annoncé comme 10% plus performant que le 7nm, et proposera des puces 10% plus petites en moyenne. TSMC n'a pas détaillé les gains directs obtenus en termes de réduction de couches, indiquant simplement un cas ou trois couches immersion peuvent être remplacées par une seule EUV.

Pour l'avenir proche, TSMC a annoncé avoir effectué le tapeout de 10 produits pour le 7nm (avec 10 tapeouts supplémentaires attendus au premier trimestre, et 50 attendus d'ici fin 2018), avec des qualifications en cours qui s'effectuent en parallèle dans deux fabs. Contrairement au 10nm qui n'a été utilisé que par Apple, le 7nm sera utilisé par tous les clients de TSMC. La production en volume commencera en juin et comme toujours, Apple devrait avoir la priorité (quelques produits au compte goutte pourraient être annoncés en 7nm vers la fin de l'année chez les plus petits clients de TSMC, C.C Wei indiquant qu'un décalage entre "smartphone" et HPC de quelques trimestre est attendu).

En 2018 c'est surtout en "12nm" (le 12FFC qui est la quatrième version du 16nm de TSMC) que l'on verra arriver des produits dans le monde du PC. Plus de 120 tapeouts de produits sont encore attendus sur ce node en 2018. A noter que TSMC ouvrira en mai son usine de Nanjing, en Chine, avec un peu d'avance sur son planning suite à une forte demande.

On note qu'en 2018, TSMC s'attend à ce que l'essentiel de sa croissance vienne de sa branche "high performance computing" et pointe particulièrement les GPU (...et les ASIC utilisés pour les crypto-monnaies). Morris Chang aura indiqué s'attendre à une hausse du marché du semi conducteur en 2018 comprise entre 6 et 8%.

La question de l'enquête anti-trust de la commission européenne , poussée par GlobalFoundries aura été vite balayée, TSMC indiquant rejeter les accusations de son concurrent. TSMC continue de se présenter comme la "Foundry de tout le monde" pour contrer l'argument, et tacler au passage Samsung en sous entendant qu'ils ne sont pas en compétition avec leurs clients. On terminera par un mot sur le 3nm, TSMC a indiqué qu'il continuait l'exploration de la technologie et que ces derniers mois, le manager du programme était de plus en plus positif, ne doutant plus de la simple faisabilité comme cela pouvait être le cas l'année dernière.

ASML atteint les 125 wafers/h en EUV

Tags : 5nm; 7nm; ASML;
Publié le 26/07/2017 à 13:15 par Marc Prieur

ASML vient de faire une annonce importante concernant la lithographie EUV puisqu'il a expérimenté avec succès l'installation d'une source lumineuse d'une puissance de 250W sur une machine NXE:3400B, ce qui lui a permis d'atteindre la cadence de 125 wafers par heure qu'ASML cible depuis longtemps.

Un progrès plus que notable par rapport aux 42 wafers/heure de 2015 et aux 85 wafers/heure de 2016. Reste maintenant à travailler sur la disponibilité des machines, elle était comprise entre 70 et 80% en 2016 mais ASML vise 90% pour 2018.

Le constructeur annonce au passage avoir obtenu 8 commandes supplémentaires de systèmes EUV NXE:3400B, portant le nombre de machines précommandées à 27 pour 2,8 milliards d'Euros. Sur le trimestre en cours ASML indique en avoir livré 3. Pour rappel l'EUV est une technologie annoncée comme essentielle pour le passage à 5nm, et qui sera exploitée partiellement sur certains process 7nm.

Samsung détaille sa roadmap jusqu'au 4nm

Tags : 10nm; 5nm; 7nm; ASML; Process; Samsung;
Publié le 29/05/2017 à 14:09 par Guillaume Louel

Samsung a donné quelques détails  sur les prochaines versions de ses process de fabrication, annonçant pas moins de cinq nouveaux process baptisés 8LPP, 7LPP, 6LPP, 5LPP et... 4LPP. Quelques informations sont données sur les différences. Ainsi, le 8LPP sera une variante du process 10nm de Samsung qui profitera de gains de performances ainsi que de gains de densité, possiblement par l'utilisation de nouvelles bibliothèques (les blocs de base qui servent à créer les puces).

Le 7LPP sera le prochain "vrai" node de Samsung. Prévu pour la fin 2018, il s'agira du premier node à introduire la lithgraphie EUV. Le constructeur indique dans son communiqué de presse avoir co-développé avec ASML une source lumineuse 250W pour cette mise en production (pour rappel, tous les fabricants ont collaboré avec ASML sur l'EUV, TSMC évoquait également 250W fin 2018 pour la mise en production de l'EUV).

Le 6LPP sera une variante optimisée du 7LPP qui utilisera ce que le marketing appelle du "Smart Scaling", diverses techniques permettant d'améliorer la densité. Il s'agira surtout pour Samsung de profiter de l'apprentissage de son premier process EUV pour optimiser légèrement les choses.

Le 5LPP sera vraisemblablement le "node" suivant au sens traditionnel du terme, il servira à préparer le terrain pour le suivant. Car c'est au niveau du 4LPP qu'un gros changement arrivera avec un passage à un nouveau type de structure de transistor. Samsung utilisera des transistors dit Gate All Around (GAAFET) qui sont une variante des FinFET où la Gate entoure le canal. La version de Samsung sera baptisée MBCFET (Multi Bridge Channel FET) et utilisera une nanosheet sur laquelle aucun détail n'est donné pour l'instant.


Les différences entre les types de transistors (source )

Ces nodes et ces variantes devraient apparaître progressivement dans les années à venir, Samsung évoquant simplement son 4LPP pour 2020 pour ne pas s'engager plus fortement sur le timing. On ne leur en tiendra pas rigueur, il est assez rare que les fondeurs partagent publiquement, et avec tant de visibilité leur roadmap.

On pourra bien entendu s'interroger sur les nomenclatures choisies par Samsung, mais au-delà de cela, la tendance reste commune chez tous les fondeurs qui multiplient les variantes d'un même process. TSMC en est à sa quatrième version de "16nm", baptisée pour le coup 12FFC, tandis qu'Intel annonçait fin mars pour la première fois trois versions de 14nm et de 10nm.

Derrière ces annonces, on retrouve des constatations communes, il est de plus en plus difficile de réduire la taille des puces, et les gains de performances et de densités apportés ne sont plus forcément aussi importants qu'auparavant (même si les fondeurs, Intel en tête, continuent d'innover sur les formules mathématiques pour ne pas dire que la loi de Moore ralentit).


Le passage au 5nm chez tous les fondeurs est attendu autour de 2020 en production risque, même si chez Intel on parlerait logiquement de "7nm", cf cette roadmap basée sur des estimations publiées sur le blog SemiWiki 

Mais au-delà du marketing derrière les variantes, le rythme annoncé par Samsung reste assez soutenu laissant penser à un écart de deux ans entre le 7nm et le 5nm, ce qui est très agressif et aligné sur ce que devrait proposer TSMC (qui lancera son 7nm d'abord sans EUV, le 8LPP lui étant opposé par Samsung). TSMC a confirmé  qu'il lancera le début de sa production en 7nm ce trimestre (la production en volume est attendue l'année prochaine). Le 5nm démarrera ses essais de production en 2019 pour une production volume en 2020 chez le fondeur taiwanais.

La confiance de Samsung sur l'EUV est également un point que l'on ne négligera pas, la lithographie à immersion touche aujourd'hui ses limites et si les problèmes de l'EUV ne sont pas tous résolus, la technologie devrait donner un peu de marge aux fondeurs.

ASML investit dans Carl Zeiss SMT pour l'EUV

Publié le 04/11/2016 à 16:02 par Guillaume Louel

ASML a annoncé hier qu'il comptait s'offrir un quart de Carl Zeiss SMT  (24.9%) pour un montant de près de un milliard d'euros. Zeiss SMT est la filiale "Semiconductor Manufacturing Technology" du groupe allemand Zeiss spécialisé dans l'optique.

ASML indique dans son communiqué  qu'il s'agit de renforcer la collaboration entre les deux sociétés, Zeiss SMT fournissant les systèmes optiques utilisés notamment dans les machines de lithographie EUV.

ASML investira en prime 220 millions d'euros dans le centre de recherche et développement de Zeiss SMT, et financera 540 millions d'investissements sur les 6 prochaines années.

L'enjeu de l'investissement, selon ASML, concerne les futures générations d'EUV avec la possibilité d'étendre la durée de vie de la technologie. Car si certains fabricants de semiconducteurs comme Samsung disent désormais (enfin !) qu'ils utiliseront l'EUV à 7nm, les très nombreux retards de la technologie font qu'elle court le risque de voir sa fenêtre d'utilisation réduite, au risque d'être remplacée par d'autres technologies.

Des systèmes optiques plus complexes avec une ouverture numérique de 0.5 (contre 0.33 pour les premières générations d'EUV) est ce que vise ASML dans cet investissement, qui ne devrait porter ses fruits que d'ici 2024. Il permettrait cependant d'étendre la durée de vie de l'EUV sous les 5nm et pour "plusieurs générations". On sait - en parallèle - qu'autour de 5nm, on atteindra les limites du silicium et l'utilisation d'autres matériaux deviendra nécessaire.

L'intérêt de la lithographie EUV est pour rappel de remplacer la source lumineuse utilisée actuellement par les scanners (elle est générée par des lasers à exciplexe Argon/Fluor avec une longueur d'onde de 193nm) par une source dont la longueur d'onde n'est que de 13.5nm, améliorant fortement les possibilités et réduisant le nombre d'étapes nécessaires pour arriver a fabriquer les puces en évitant la généralisation du multi-patterning.

ASML aurait réitéré à nos confrères d'EEtimes  que quatre fabricants de puces, et deux fabricants de mémoires, se sont engagés à faire entrer l'EUV en production en 2018, quelque chose que la firme avait également indiqué dans une présentation aux investisseurs (qui évoquait 2018/2019). Une affirmation qui nous parait bien optimiste !

Aujourd'hui, seuls Samsung et GlobalFoundries se sont engagés publiquement à 7nm, pour des dates qui coïncident. En ce qui concerne TSMC, il faudra attendre le 5nm pour le voir arriver de manière extensive, sa production risque est prévue pour 2019 uniquement. Intel avait annoncé de son côté qu'il n'utiliserait pas l'EUV à 10nm, et qu'au mieux l'EUV était "une option" pour le 7nm. Le 7nm d'Intel utilisera une solution de lithographie a immersion classique. Et côté dates, 2019 semble extrêmement optimiste considérant l'exécution d'Intel ces dernières années (retards massifs sur le 14nm, introduction de Kaby Lake pour retarder le 10nm, lancement du 10nm repoussé à fin 2017 et uniquement sur des références mobiles, sans parler de l'introduction dans la roadmap de Coffee Lake en 2018... et en 14nm !).

En ce qui concerne les fabricants mémoire, Samsung avait évoqué la possibilité sans pour autant s'engager fermement. SK Hynix évoquait l'utilisation de l'EUV vers 2019.

Les machines qui seront utilisées en production, les NXE:3400B, atteindraient d'après ASML un débit de 125 wafers/heure, un progrès notable par rapport à mars 2015 ou ASML se félicitait de 42 wafers/heure (entre 50 et 100 wafers/heure étaient considérés comme le minimum pour éventuellement utiliser la technologie d'après Mark Bohr d'Intel). Pour arriver à ce chiffre, ASML devra augmenter fortement la puissance de la source lumineuse. Le constructeur aurait livré des sources 125W à ses clients cette année qui ont permis d'atteindre 85 wafers/heure.

La question de la disponibilité des machines semble également être meilleure, de seulement 55% à l'époque, ASML atteint aujourd'hui entre 70 et 80%, avec l'objectif d'être a 90% en 2018.

L'enthousiasme d'ASML - le seul à se lancer dans l'EUV - est forcément élevé pour sa technologie mais il faut une fois de plus rappeler que les scanners ne sont qu'une partie de la chaîne de fabrication. Les progrès réalisés, bien qu'importants, ne veulent pas dire que l'EUV est "prêt", loin de là.

La question des masques (la plaque transparente qui contient l'image de la puce à graver) et de l'inspection de leurs éventuels défauts n'a pas encore été résolue. Et si là aussi ASML tente d'apporter sa propre réponse, en pratique le problème reste complexe a solutionner avec des conséquences massives sur la viabilité de la technologie en production (plus de détails dans cet excellent article ).

L'EUV possiblement pour le 7nm ?

Tags : 10nm; 5nm; 7nm; ASML; Intel; Samsung; TSMC;
Publié le 23/02/2016 à 19:21 par Guillaume Louel

Le site SemiWiki  nous rapporte quelques informations sur l'état de la fabrication EUV, en provenance de la conférence SPIE Advanced Lithography  qui se tient actuellement à San José.

Lors de la même conférence l'année dernière, les nouvelles étaient pour rappel plutôt bonnes (voir le lien pour un rappel complet sur la fabrication des processeurs et l'importance capitale de l'EUV !) et l'on espérait une introduction en cours de process pour le 10nm, et une introduction complète à 7nm. Malheureusement, on le rappelait en janvier, TSMC avait calmé les ardeurs en indiquant qu'il faudrait attendre le 5nm pour une éventuelle introduction de cette technologie.

SemiWiki confirme certains chiffres donnés lors de la dernière conférence aux investisseurs de TSMC, à savoir que la machine avait atteint sur une période de quatre semaines une production de 518 wafers/jour, un niveau encore largement insuffisant. Intel a partagé également quelques chiffres, un peu inférieurs à ceux de TSMC, à savoir entre 2000 et 3000 wafers par semaine (285-428 par jour).

On notera quand même que le taux de disponibilité des scanners de la société ASML a augmenté, passant de 55 à 70% chez TSMC (Intel rapportant une disponibilité identique) ! On notera que s'il est question d'une introduction en début de node à 5nm, TSMC laisse la porte ouverte pour le 7nm si jamais des progrès étaient effectués. Intel de son côté n'a pas donné d'information. Samsung envisagerait l'introduction à 7nm selon les présentations, sans plus de précisions.

Si la question de la disponibilité est importante, celle de la puissance de la source lumineuse l'est encore plus. Après avoir été limité à 40 watts l'année dernière, les machines actuellement en évaluation chez TSMC disposent désormais de sources 80 watts. C'est mieux, mais cela reste loin des 250 watts promis par ASML pour fin 2015. Les dernières prédictions sont désormais de 250 watts en 2016-2017, et au delà en 2018-2019, des plages particulièrement larges.

Atteindre les 250 watts de puissance permettrait d'augmenter significativement la cadence de production, atteignant 170 wafers/heure en théorie. ASML a effectué des démonstrations que TSMC et Intel semblent juger prometteuses de 185 et 200 watts. Reste à les voir en production, bien évidemment. Les challenges de cette technologie restent complexes et ne se limitent pas à ces deux points cruciaux, la question des défauts dans les masques est elle aussi importante même si là aussi TSMC et Intel ont visiblement noté quelques progrès. Vous pouvez retrouver plus de détails sur ces points dans l'article de SemiWiki .

Top articles