Les contenus liés aux tags TSMC et ASML

Afficher sous forme de : Titre | Flux

16nm à l'heure, EUV en retard pour TSMC

Tags : 10nm; 16/14nm; 7nm; ASML; TSMC;
Publié le 17/07/2015 à 18:05 par Guillaume Louel

TSMC a également annoncé ses résultats financiers. La société a enregistré pour le second trimestre un chiffre d'affaire de 6.62 milliards avec une marge brute atteignant 48.5%. Par rapport au même trimestre l'année dernière, cela représente une hausse de 12.2% du CA (et 33% pour les bénéfices).

Au-delà des chiffres, TSMC a donné quelques détails intéréssants, confirmant d'abord la cession de sa participation dans ASML qui avait été annoncée en janvier, en assurant que cela ne changeait strictement rien à ses liens avec la société basée aux Pays-Bas. TSMC a également cédé 5% de sa participation dans Vanguard (VIS), un spinoff de TSMC proposant des services spécialisés. TSMC garde malgré tout le contrôle de 28% de VIS, étant toujours l'actionnaire majoritaire.

Le 28nm continue de représenter 27% des revenus tandis que le 20nm aura représenté 20% des revenus sur le second trimestre. TSMC note cependant que côté smartphones, les inventaires chez les constructeurs sont importants, particulièrement sur les produits d'entrée et milieu de gamme faute d'augmentation de la demande en Chine et dans les marchés émergeants. Le dollar elevé est l'une des causes mises en avant, tout comme les situations économiques locales. Tous ces facteurs font que TSMC s'attend à voir une hausse de son activité possiblement plus mesurée qu'ils ne le pensaient.


La nouvelle la plus importante est la confirmation que le 16nm est bel et bien en cours de production et que les premières puces ont été livrées ce mois-ci. Sur le 16nm, TSMC indique que la montée en puissance de son process sera extrêmement rapide, plus rapide que le 20nm profitant du BEOL (la seconde partie du process qui gère les interconnexions, plus de détails ici ) commun. Les taux de défauts sont annoncés comme extrêmement bas, et la courbe de réduction des défauts est la meilleure jamais obtenue par TSMC.

La société pense rafler en 2016 la majorité du marché 16nm. Les premiers clients en volume de TSMC sur le 16nm sont très probablement Apple (qui utiliserait aussi Samsung selon les rumeurs pour son A9) et Qualcomm qui ont en général la priorité sur les nouveaux nodes, même si AMD a annoncé avoir effectué deux tapeout sur ce process (sans préciser s'il s'agissait bien de TSMC, ou de GlobalFoundries).

TSMC a également profité de l'occasion pour parler du 10 et du 7nm. Selon TSMC les progrès réalisés sur le 10 nm sont « très encourageants » et continue de prévoir un début de la production en volume fin 2016. Une date qui, si elle est effectivement tenue, placerait potentiellement la sortie de produits 10nm en volume chez les très bons clients de TSMC avant même la sortie de Cannonlake chez Intel. Encore faut-il que TSMC tienne ses délais, bien évidemment, mais sur les deux derniers nodes cela a plutôt été le cas. Techniquement par rapport au 16 FinFET+ (la version la plus avancée de son process FinFET), le 10nm apporte 15% de vitesse à puissance égale, ou 35% d'économie d'énergie à vitesse égale. La densité est 2.2x celle du 16 FinFET+.

On notera avec intérêt que pour le 10nm, TSMC annonce des tape out sur un tas de secteurs, y compris ce qu'ils appellent high-performance computing, sous-entendu des CPU/SoC. Morris Chang, le chairman de TSMC est même allé un peu plus loin indiquant qu'il pense que TSMC va jouer un rôle important sous peu dans les marchés notebook et serveur, à condition de lier trois acteurs. Non seulement une fonderie (TSMC), ARM, mais aussi des sociétés capables de faire des designs custom « haute performance ».

TSMC a également évoqué le 7nm, s'attendant à lancer la qualification de son process au premier trimestre 2017, soit seulement cinq trimestres après la qualification attendue du 10nm. Le fondeur n'est pas très précis sur la technique, indiquant profiter de la maturité du 10nm pour mettre en place le 7nm, ce qui sous entends peut être que de la même manière qu'ils l'ont fait pour le 16nm avec le 20nm, TSMC pourrait garder le BEOL du 10nm sur le 7nm. Cela expliquerait très certainement le délai très réduit entre les qualifications.

Concernant l'EUV, Mark Liu, l'un des Co-CEO a indiqué que la porte était toujours ouverte et qu'ils travaillaient activement avec ASML, mais qu'il restait encore des challenges à résoudre, particulièrement autour des masques. Il a également indiqué que le 7 nm n'utiliserait « probablement pas » l'EUV dans un premier temps mais qu'il pourrait être introduit dans un second temps, et qu'il serait introduit dès le début à 5nm. Un changement de position – et une mauvaise nouvelle pour ASML - par rapport au discours habituel qui indiquait que l'EUV serait possiblement introduit dans un second temps à 10nm et dès le début à 7nm.

ASML vend 15 machines EUV à Intel

Tags : 10nm; 7nm; ASML; Intel; TSMC;
Publié le 23/04/2015 à 10:42 par Guillaume Louel

La société ASML s'est fendu hier d'un communiqué de presse pour indiquer avoir signé un accord important pour la vente de machines de lithographie EUV. Nous étions revenus sur le sujet à la fin du mois dernier, après de long et multiples retards, cette technologie de lithographie nouvelle génération avait effectué quelques progrès substantiels, notamment chez TSMC, qui avait commandé deux machines NXE:3350B livrables cette année, des machines dédiées au 10nm.

Le communiqué d'ASML indique que la firme néerlandaise a trouvé un accord avec un de ses « gros client américain » pour livrer, dans un délai non précisé, 15 machines EUV. Deux de ces machines au moins seront de type NXE:3350B (10nm) et seront livrées cette année.


Il ne faut pas trop d'imagination pour deviner que le client en question est Intel. La société avait investi de manière importante dans ASML en 2012 même si elle restait prudente sur l'utilisation à venir de la technologie. Cet accord semble montrer un regain d'intérêt autour de l'EUV, même si à l'image de TSMC on s'attend probablement à un déploiement initial autour du 7nm.

La cadence de production des machines sera en effet étalée dans le temps. Six (à huit) machines NXE:3350 devraient être vendues cette année (deux à Intel, deux à TSMC et possiblement deux à Samsung qui était le troisième à avoir investi dans ASML en 2012). La production devrait s'intensifier progressivement puisque ASML table sur la production de douze machines en 2016, vingt-quatre en 2017 et 48 en 2018.

On notera enfin que si l'intérêt autour de l'EUV se porte aujourd'hui pour la fabrication de circuits logiques (processeurs), ASML compte également déployer l'EUV auprès des fabricants de mémoire DRAM dans un second temps. La production de mémoire flash NAND en EUV pourrait suivre avec un décalage de deux à trois ans selon le CEO d'ASML.

Quelques (bonnes !) nouvelles de l'EUV

Tags : 10nm; 7nm; ASML; TSMC;
Publié le 31/03/2015 à 10:45 par Guillaume Louel

Il y a quelques semaines se tenait le symposium « Advanced Lithography » du SPIE , une organisation internationale qui se focalise sur les challenges des technologies optiques et photoniques. Antony Ten de TSMC y a tenu une présentation ou il est revenu sur les avancées de la technologie de lithographie EUV (Extreme Ultraviolet Lithography).

L'EUV représente une évolution majeure, attendue depuis très longtemps dans le monde de la fabrication des semi-conducteurs. Déjà en 2002, Intel passait sa première commande auprès d'ASML pour une machine destinée à être livrée de 2005. 10 ans après cette échéance, l'avènement de l'EUV ne s'est toujours pas fait même si les dernières nouvelles rapportées par TSMC semblent plutôt prometteuses.


ASML est le fabricant d'outil qui a misé depuis le début sur les EUV, les autres acteurs ayant jeté l'éponge

Pour rappel, les processeurs sont fabriqués via ce que l'on appelle la photolithographie , un mécanisme qui permet, via de multiples opérations successives de transférer un masque sur une galette de silicium (communément appelé wafer) en utilisant une source lumineuse. Une version high tech d'une photocopieuse utilisée pour effectuer des réductions en quelque sorte. Actuellement la source lumineuse utilisée pose problème à l'industrie. D'une longueur d'onde de 193nm, elle est générée par des lasers à exciplexe (Argon/Fluor). Elle traverse une série d'éléments optiques pour la focaliser et sert à exposer des solutions photorésistantes qui ont été déposées préalablement pour dessiner sur le wafer. Des étapes qui prennent individuellement un certain temps et qui se multiplient pour chacune des couches qui composent les semi-conducteurs. De bout en bout (et cumulé à toutes les autres étapes de la chaine) il faut entre 2 et 3 mois pour obtenir un produit final.

Les réductions de géométrie successives (on atteint aujourd'hui 14/16nm et bientôt 10nm) complexifient les systèmes de réduction ce qui fait que chaque node apporte ses challenges depuis quelques années tant il devient impossible d'atteindre une netteté parfaite sous les 50nm. Pour compenser cela, des techniques (lithographie à immersion, multiple patterning, etc) sont utilisées ponctuellement pour les couches les plus importantes des puces. A l'approche du 10nm, une généralisation du multi patterning (qu'on pourrait simplifier à passer deux fois une feuille dans une photocopieuse quand on a un toner défaillant pour la rendre lisible) devient obligatoire ce qui augmente les temps, crée de nouveaux problèmes (d'alignement notamment), impose des règles de design strictes dans la manière dont les ingénieurs doivent placer les transistors, et donc augmente les couts.

Avec une longueur d'onde de 13.5 nm, l'EUV promet de simplifier les systèmes optiques (bien qu'elle engendre de nouveaux problèmes, évidemment !) mais c'est la génération de cette lumière qui pose problème. La technique en elle-même est très complexe puisque des goutes microscopiques d'étain sont envoyées dans une chambre sous vide avant d'être vaporisées individuellement par un laser extrêmement puissant pour produire cette lumière UV extrême qui est enfin collectée et focalisée avant de pouvoir être utilisée. Le tout à une cadence de 50000 goutes par seconde. Une complexité qui empêchait d'atteindre en production de manière constante – il y a un an de cela - une puissance dépassant les 10 watts d'après TSMC durant le même symposium SPIE.

Le rachat de la société Cymer (qui fournit des sources lumineuses a l'industrie) par la société ASML (qui développe pour rappel les outils EUV) en 2013 semble cependant enfin porter ses fruits puisque ASML avait annoncé en juillet, puis en septembre  que deux de ses clients avaient réussis à exposer plus de 500 wafers sur une durée de 24 heures via leur machine NXE:3300B, équipée alors d'une source d'une puissance de 40 watts.

Mieux, TSMC a annoncé durant le symposium SPIE avoir pu faire fonctionner pendant 24 heures d'affilée sa machine NXE:3300B équipée d'une source de 80 watts (la seule au monde équipée aujourd'hui de cette source puissante). Durant cette période elle a pu exposer 1022 wafers ce qui donne un rapport wafer/heure de 42.58, un chiffre qui s'approche fortement des « 50 à 100 par heure » qu'évoquait Mark Bohr en 2012 pour commencer à considérer l'EUV.


L'imposante NXE :3300B d'ASML

Des progrès importants qui ont valu à TSMC d'indiquer que l'utilisation de l'EUV pour le 7nm était une possibilité, et qu'introduire l'EUV dans un second temps dans son process 10nm, pour certaines couches critiques n'était pas impossible. La roadmap d'ASML promet d'augmenter la puissance à 125 watts à la fin du second trimestre avec la source de lumière du NXE:3350B et même 250 watts avant la fin de l'année.

Si ces nouvelles sont dans l'absolu très bonnes, et un pas en avant très important pour l'EUV, d'autres problèmes restent à régler. Le site SemiWiki  rappelle que dans cette même présentation, TSMC indiquait que le taux de disponibilité de leur machine NXE:3300B version 40 watts, sur un test prolongé de 8 semaines n'était « que » de 55%. Un chiffre que l'on doit là encore à la source lumineuse, le générateur de goutes d'étain devant être remplacé… tous les 4 jours. La prochaine version de la source lumineuse fournie par Cymer promet de résoudre ce problème même s'il faudra voir dans quelle mesure. Un système de nettoyage automatique de la partie optique devrait également améliorer la disponibilité.

Dans tous les cas cette avancée de l'EUV est importante et si d'autres problèmes périphériques seront à résoudre, une des plus grosses épines dans le pied de l'EUV semble enfin s'envoler, laissant penser que la technologie pourrait enfin s'approcher d'une mise en production possible ! Quelque chose que l'on pourra confirmer au milieu de l'année, TSMC ayant commandé deux machines NXE:3350B dédiées au 10nm. Ses deux machines existantes seront également mises à jour. Le tout dans le but de les aider à préparer une introduction éventuelle sur leur process 7nm, possiblement à l'horizon 2017.

TSMC va céder sa participation dans ASML

Tags : ASML; TSMC;
Publié le 16/01/2015 à 11:01 par Marc Prieur

En 2012, le fabriquant d'outils de photolithographie ASML avait ouvert son capital à ses clients. Conjointement à des prises de participation de 15%, 5% et 3% pour Intel, TSMC et Samsung, ces clients avaient investis un total de 1,1 milliards d'euros afin de financer le développement de la lithographie EUV et de la transition vers des wafer de 450mm.


Les trois industriels ne pouvaient pas vendre leurs titres avant deux ans et demi et TSMC profite de la levée du blocage en avril prochain pour annoncer qu'il a passé au cours de l'année précédente des contrats avec plusieurs fonds afin de revendre ses 21 millions d'actions acquises à 39,91 € pièce au tarif de 62,59 €. Si la plus-value parait sympathique, TSMC ne profitera par contre pas de la récente hausse du court d'ASML, le titre étant passé de 70 à 88 € au cours des trois derniers mois.

Au-delà de l'opération financière il est improbable que cela signifie quoi que ce soit vis-à-vis des relations qu'entretiennent TSMC et ASML. Alors qu'il y a 10 ans ASML, Canon et Nikon se partageaient le marché, ASML est depuis monté en puissance avec près de 80% du marché !

L'EUV prêt chez ASML pour 2015 ?

Tags : ASML; Intel; TSMC;
Publié le 06/08/2013 à 11:27 par Guillaume Louel

Nos confrères d'IEEE Spectrum viennent de publier un article  relatant des nouvelles assez optimistes en provenance d'ASML.

Elles concernent bien entendu la photolithographie EUV, un point de plus en plus critique pour le développement des futures technologies de lithographie au-delà de 2015. Pour rappel, les procédés de photolithographies actuels reposent tous sur des sources lumineuses d'une longueur d'onde de 193nm, repoussée aujourd'hui dans ses derniers retranchements au travers de multiples techniques comme le patterning multiple. L'EUV apportera une source lumineuse plus flexible dont la longueur d'onde sera de seulement 13 nm, et dont la nécessité se fait de plus en plus pressante avec l'approche de la finesse de gravure 10 nm (attendue théoriquement pour 2015, mais peut être plus probablement pour 2016) où la technologie est vue comme quasi indispensable par beaucoup (Intel avait évoqué avoir mis au point une alternative "non EUV" en cas d'une nouvelle défaillance).

Le fournisseur d'outil ASML travaille depuis des années sur des machines de photolithographie EUV avec un succès relativement modéré, quelque chose que l'on doit à la grande complexité du problème qu'ils tentent de résoudre. Nous vous avions rapporté l'été dernier qu'ASML avait ouvert son capital à ses clients dans le but d'obtenir un financement spécifique pour accélérer le développement de la lithographie EUV. Intel avait ainsi investi 3.3 milliards d'euros, suivi rapidement par TSMC et Samsung.


De multiples problèmes restent à résoudre du côté de l'EUV, le principal étant l'intensité de la source lumineuse utilisée qui impacte directement le débit de la machine. Pour que la technologie soit économiquement viable, Mark Bohr d'Intel estimait qu'un débit de 50 à 100 wafers par heure était nécessaire. Un chiffre significativement plus important que les niveaux de production actuels des machines de préproduction EUV, plus proches de la dizaine de wafer par heure. Malgré tout, nous avions noté en avril que TSMC était confiant sur la possibilité de fabriquer, avec ASML, du 10nm EUV dès 2015.

Durant la conférence Semicon West , ASML a donné de nouveau détails et présenté une roadmap pour atteindre la mise en production en 2015 avec un objectif de 125 wafers/heure. Les avancées reposent en partie sur le rachat de la société Cymer  en mai dernier par ASML. Cette société développe des sources lumineuses EUV qui combinent des minuscules goutes d'étain avec un laser pour créer un plasma qui emet à son tour de la lumière EUV. Une des avancées de Cymer concerne l'ajout d'un second laser en amont pour améliorer le rendement du laser principal. La technologie a déjà été appliquée sur une machine de préproduction d'ASML en mars dernier avec un rendement "stable" de 30 wafers par heure via une source lumineuse 40 watts.

ASML dispose désormais d'une roadmap - via Cymer - pour atteindre les 250 watts qui seront nécessaire à atteindre le niveau de production de 125 wafers/h en 2015 sur leurs machines de production NXE:3300B . La société pense pouvoir démontrer, d'ici à la fin de l'année un rendement - stable - de 80W. Un des problèmes des sources lumineuses EUV à l'étude était qu'au-delà de la puissance souvent trop faible, les valeurs annoncées étaient souvent en pointe et pas vraiment reproductibles dans la durée. Sur ce point ASML tente de rassurer indiquant avoir obtenu un niveau de qualité constant sur des tests répétés de plus de 40 heures d'affilés.

Si ces nouvelles sont plutôt bonnes en ce qui concerne les sources lumineuses, il ne s'agit bien entendu pas du seul problème à résoudre. Le niveau de défaut dans la fabrication des masques est un autre obstacle majeur sur lesquels les différents acteurs de l'industrie devront travailler en parallèle.

Top articles