Les derniers contenus liés au tag Intel

Afficher sous forme de : Titre | Flux Filtrer avec un second tag : AMD; Atom; Core i3; Core i7; Haswell; Ivy Bridge; LGA 1150; LGA 1155; LGA 2011; Skylake;

Nouvelle extension vectorielle ARMv8-A SVE

Tags : ARM; ARMv8; AVX-512; AVX2; Intel;
Publié le 23/08/2016 à 15:32 par Guillaume Louel

ARM profite également de la conférence Hot Chips pour présenter une nouveauté importante de son jeu d'instruction, une extension vectorielle baptisée SVE (Scalable Vector Extension).

Les instructions vectorielles permettent pour rappel d'effectuer une même opération sur plusieurs données à la fois (regroupées dans un vecteur au sens informatique , un tableau à une dimension). Dans les architectures x86, on a vu de multiples extensions se succéder. Si l'on reste chez Intel, après les différentes variantes de SSE, on aura connu plus récemment AVX dans Sandy Bridge, AVX2 dans Haswell et AVX-512 pour les Skylake serveurs uniquement.

Dans la grande tradition du x86 qui est un jeu d'instruction "large" (CISC), chaque extension rajoute de nouvelles instructions vectorielles adaptées spécifiquement aux unités matérielles présentes dans chaque génération de processeur introduite. Parmi les changements d'une version à l'autre, outre de nouvelles opérations (par exemple effectuer une multiplication et une addition en simultanée), ce qui évolue surtout est la quantité de données qu'une puce est capable de traiter. Ainsi, comme son nom l'indique, AVX-512 permet d'effectuer des opérations sur des données par groupes de 512 bits (par exemple 16 données 32 bits) à la fois, là ou les unités d'AVX2 travaillaient sur des groupes de 256 bits (dans le même exemple, 8 fois 32 bits).


Les instructions FMA3 d'AVX2, on notera la large quantité de variantes proposées

Ce modèle d'instructions adaptées a chaque variante de matériel à l'avantage d'être simple pour les constructeurs, chaque nouveauté est géré par de nouvelles instructions, mais en pratique ce mode de fonctionnement est très problématique. Comme nous avions eu l'occasion de le voir, en général, les programmes sont compilés pour une architecture donnée, parfois deux lorsque l'on a de la chance, ce qui pousse souvent les logiciels commerciaux à ne pas forcément utiliser les dernières nouveautés matérielles par souci de compatibilité.

Cela permet aussi aux constructeurs qui disposent d'un compilateur, comme on l'avait vu avec Intel, d'augmenter artificiellement l'avantage proposé par une architecture. S'ajoute en prime le problème de la vectorisation du code source des logiciels, un problème compliqué qu'on résout soit à la main, soit en laissant faire le compilateur qui, malgré sa meilleure volonté, se retrouve assez souvent dans des situations ou il ne peut pas vectoriser automatiquement le code, par prudence.

Dans le monde ARM, la situation est beaucoup plus simple. Le jeu d'instruction ARM repose pour rappel sur le principe d'un jeu d'instruction réduit (RISC) et rajouter de nouvelles instructions à chaque nouveau processeur n'est pas une option. ARM avait tout de même introduit une extension vectorielle, NEON , qui rajoute des instructions vectorielles (VFP) sur 128 bits. Cette extension avait été conçue il y a une douzaine d'année, exploitée notamment sur l'architecture précédente (ARMv7 en 32 bits).

Pour le passage à son architecture 64 bits, ARMv8-A, ARM n'avait pas apporté de changement fondamental à NEON. C'est désormais chose faite avec l'introduction de SVE, dont les ambitions vont pour le coup beaucoup plus loin.

ARM donne quelques petits détails dans un post de blog  sur le fonctionnement de sa nouvelle extension. L'idée de base de SVE se retrouve dans son nom : il s'agit d'une extension Scalable, la taille des vecteurs sur lequel les instructions s'appliquent n'est pas fixe (contrairement à AVX-512 et ses vecteurs 512 bits).

Côté matériel, la spécification d'ARM laisse le choix aux designers de processeurs qui peuvent choisir la largeur de leurs unités de calcul, entre 128 et 2048 bits (!). Cela donne un maximum de flexibilité, permettant de créer des designs orignaux et adaptés à des marchés spécifiques (ARM vise principalement avec SVE le marché des serveur et du HPC, même si le jeu d'instruction devrait se retrouver sur d'autres puces).

Le plus intéressant est ce qui se passe au niveau du jeu d'instruction : il est indépendant de la taille des vecteurs à traiter (la société parle de VLA, Vector Length Agnostic). Concrètement, plutôt que d'utiliser des instructions qui traitent (par exemple) 4 données 32 bits, les instructions VLA indiquent directement quelles instructions appliquer aux vecteurs sans s'occuper d'un quelconque découpage.

Techniquement, ARM ne détaille pas vraiment comment sera implémenté la chose côté matériel, se contentant de dire que c'est le matériel qui, en fonction de la taille de ses unités, s'occupera de découper le vecteur en autant de passes que nécessaire pour le traiter dans ses unités. ARM indique simplement que l'encodage de la taille du vecteur n'est pas nécessaire et qu'elle est déterminée par les mécanismes de prédiction des puces (qui seraient particulièrement performants y compris pour les boucles imbriquées).

Le fonctionnement exact est assez flou, et diffère d'une proposition d'extension - sur le fond assez proche - que l'on avait vu l'année dernière pour le jeu d'instruction RISC-V (PDF) . D'après ARM, un travail important a été effectué sur les instructions qui permettent de charger les données en mémoire pour les traiter, elles représenteraient la majorité des instructions ajoutées.


Extrait de la présentation de proposition vectorielle pour RISC-V, à gauche un code SIMD classique 128 bits, à droite un code vectoriel. La première instruction vsetvl indique la taille des vecteurs traités

L'approche est très différente de celle des SSE/AVX, on peut même la qualifier d'élégante, et devrait permettre de conserver un jeu d'instruction très compact tout en offrant une grande flexibilité. ARM indique que seul un seizième de l'espace d'encodage d'instruction RISC disponible est utilisé pour les nouvelles instructions VLA (les instructions AArch64 sont encodés sur 32 bits, 75% de cet espace est déjà utilisé aujourd'hui par le reste des instructions).

En prime, cela résout le problème de la compilation que nous évoquions plus haut : un programme compilé avec des instructions vectorielles VLA pourra profiter pleinement de toutes les architectures matérielles SVE existantes et à venir.

Cette extension devrait permettre de voir des puces ARM assez différentes arriver sur le marché et si le monde des serveurs et du HPC est clairement visé - ARM met en avant Fujitsu qui développera une puce ARMv8-A avec SVE pour le supercalculateur Post-K prévu pour 2020 - on s'intéressera aussi à l'arrivée de SVE dans des puces plus classiques. La publication de la version finale de la spécification est prévue pour la fin de l'année ou le tout début 2017.

AMD continue de gagner des parts de marché GPU

Tags : AMD; Intel; Nvidia;
Publié le 22/08/2016 à 18:48 par Guillaume Louel

Mercury Research vient de publier ses derniers chiffres (format PDF)  concernant les ventes de GPU sur le second trimestre.

Du côté des GPU desktop, les changements sont restreints puisque AMD passe seulement de 22.7 à 22.8% de parts de marché, pas de quoi compenser le déclin qui avait commencé au troisième trimestre 2014.

En ce qui concerne le marché des GPU additionnels mobiles, là aussi AMD note un gain, passant de 35.9% sur le trimestre précédent à 36.4%. Si l'on considère la totalité du marché GPU, Intel baisse très légèrement (pour la première fois depuis 10 ans selon la firme) passant de 71.7% au trimestre précédent à 71.5%. Nvidia passe de 16.3% à 16.1% tandis qu'AMD progresse de 11.8% à 12.3%. A l'inverse d'Intel, c'est la première fois qu'AMD inverse sa courbe de baisse depuis le premier trimestre 2012. On peut tout de même tempérer cela en rappelant qu'au second trimestre 2015, AMD disposait de 14% de parts de marché GPU global.

Côté tendances, le marché global du GPU reste à la baisse avec -3.1% de ventes par rapport à la même période l'année dernière, et -6.5% séquentiellement en nombres d'unités. Sur les GPU desktop, la baisse par rapport au trimestre précédent a atteint un impressionnant -20%, majoritairement lié à un inventaire important chez les distributeurs, concernant principalement Nvidia.

Le constructeur a compensé cela par l'arrivée de ses références haut de gamme, Mercury Research remarquant que le prix de vente moyen des GPU desktop a atteint sur ce trimestre un nouveau record.

Intel Custom Foundry prend une licence ARM !

Publié le 17/08/2016 à 16:25 par Guillaume Louel

ARM l'a confirmé par un post de blog  : Intel Custom Foundry, l'activité fabrication tiers d'Intel, est désormais détentrice d'une licence ARM Artisan pour le 10nm !

Il faut rappeler qu'Intel est plutôt un cas à part dans le monde des semi-conducteurs, étant l'une des rares sociétés à disposer de ses propres usines, utilisées quasi uniquement pour la production de ses propres puces. La plupart des autres acteurs du marché ont migré vers la séparation de l'activité design d'un côté (on parle de sociétés fabless, c'est le cas dans le monde du GPU avec AMD et Nvidia), et de l'autre la fabrication dans des sociétés tierces spécialisées (on parle de foundry, la plus connue étant TSMC qui fabrique des puces pour de multiples clients).

Avec la difficulté de la mise au point des nouveaux process de fabrication, qui n'a fait qu'empirer ces dernières années, il est de plus en plus complexe pour une société à elle seule de justifier l'investissement nécessaire pour faire évoluer sans cesse ses usines. Qui plus est, la réduction de la taille des transistors fait que la capacité des usines augmente d'année en année, et qu'il faut disposer de très larges volumes de puces à produire, au risque de voir ses usines tourner à vide.

Un casse tête qui aura poussé plusieurs sociétés à se séparer de leurs usines (pour des raisons différentes) d'abord AMD en 2009 (créant GlobalFoundries) et plus récemment IBM (dont l'activité fabrication à été rachetée elle aussi par GlobalFoundries).

Depuis quelques années, en plus de fabriquer ses propres puces dans ses usines, Intel a décidé d'entrer très timidement, en 2010, sur le marché des fondeurs tiers en ouvrant son process à de petites sociétés qui n'étaient pas en concurrence directe avec ses produits (le premier client était Achronix, designer de FPGA en 22nm). D'autres clients ont suivi, principalement sur les FPGA, le client le plus connu d'Intel ayant été Altera... même si au final Intel aura décidé de racheter son client à la mi-2015 !

Pour Intel, la nécessité d'ouvrir ses usines est un casse tête. D'un côté, la société tente d'être présent sur tout les marchés, en déclinant le x86 - technologie "maison" sur laquelle la concurrence est limitée - à toutes les sauces et avec un soupçon de recyclage, que ce soit avec des produits serveurs spécialisés comme les Xeon Phi basés sur des Pentium pour leur première génération, ou les Quark dédiés à l'embarqué et utilisant une architecture de 486 datant d'une bonne vingtaine d'années !

Si l'envie de la société d'être présente sur tous les marchés est là, en pratique les succès ne sont pas systématiquement au rendez vous, Intel ayant par exemple massivement raté le marché des smartphones. Cumulé à la baisse continue des ventes sur le marché historique des PC, l'ouverture des usines à des clients tiers se dessine de plus en plus comme une nécessité pour Intel, même si l'avouer semble impossible à la société, qui continuait donc d'envoyer des signaux mitigés aux possibles futurs clients de son activité fabrication.

Avec l'annonce d'aujourd'hui, les choses sont - peut être - en train de changer puisque la prise de licence ARM par Intel est tout sauf anodine. Ce n'est pas la première fois qu'Intel fabriquera des SoC ARM, on l'avait vu avec Altera qui utilisait un core ARM dans un usage très spécifique.

La licence Artisan Physical IP  inclut en effet toutes les briques nécessaires pour la création de puces ARM de tout types. Il s'agit de tous les blocs de base avec des bibliothèques haute densité et haute performance de transistors logiques,et également tout le nécessaire pour les différents types de mémoire. La licence inclut surtout POP IP, qui est pour rappel l'idée qui fait le succès d'ARM : permettre l'utilisation de blocs interchangeables et compatibles pour créer des puces custom. Ainsi un client peut choisir d'utiliser des coeurs CPU dessinés par ARM (les gammes Cortex) ou créer ses propres coeurs (c'est le cas d'Apple et plus récemment de Nvidia), de choisir un GPU (que ce soit les Mali d'ARM, ou les populaires PowerVR d'Imagination Technologies), et également de choisir son fournisseur pour les interconnexions.

Concrètement, Intel va donc "porter" ces bibliothèques d'ARM aux particularités de son futur process 10 nm, ce qui permettra aux partenaires d'ARM de porter à leur tour - s'ils le souhaitent - leurs blocs POP IP. ARM et Intel travailleront conjointement pour le portage de deux futurs blocs CPU ARM Cortex-A (probablement un autre successeur 10nm de l'A72, voir l'annonce de l'A73 en 10nm lui aussi), la déclinaison que l'on retrouve dans les smartphones et tablettes.

Faut il y voir un virage pour Intel ? Fabriquer des puces ARM pour smartphones, ce qu'ils feront pour LG (nouveau client annoncé dans la foulée) va forcément à l'encontre des ambitions internes d'Intel d'imposer le x86 sur mobile. Car si un peu plus tôt dans l'année Intel avait décidé d'annuler sa nouvelle génération de SoC pour smartphones (Broxton et SoFIA), le constructeur continuait en interne à travailler sur les générations suivantes tout en essayant de développer dans l'intérim son activité modem (Intel aurait possiblement gagné le marché du modem du prochain iPhone). A l'heure où ARM augmente ses ambitions pour aller attaquer le marché juteux des serveurs, on peut se demander jusqu'où ira réellement l'ouverture d'Intel.


Un futur CPU ARMv8 24 coeurs de Qualcomm

En fabriquant des puces concurrentes, Intel s'ouvre à des comparaisons directes qui pourraient être assez défavorables à ses architectures x86, assez peu adaptées à la basse consommation. L'avantage supposé du process d'Intel, s'il existe, ne pourra plus jouer en la faveur de ses propres solutions pour compenser un éventuel déficit architectural. La structure de marges d'Intel, là aussi très différente de celle des fondeurs tiers, posera là aussi rapidement problème.

Qui plus est, en obtenant la licence Artisan d'ARM, Intel va devoir partager tous les détails techniques, y compris les plus secrets, de son process en ce qui concerne les règles et les dimensions exactes des transistors, ce qui va l'exposer là aussi à une comparaison directe avec les autres acteurs installés du milieu (comme TSMC et Samsung). Il faudra un peu de temps pour mesurer les conséquences concrètes de tout cela, car cet accord ne concerne que le 10nm, un process pour rappel en retard et qui n'est prévu chez Intel que pour la fin de l'année 2017 en version mobile. Les dernières nouvelles du 10nm, sur lequel Intel ne communique pas, n'étaient pour rappel pas particulièrement rassurantes avec l'arrivée possible sur sa roadmap de puces 14nm... pour 2018.

Microsoft capitule sur le support de Skylake

Publié le 16/08/2016 à 14:36 par Guillaume Louel

En début d'année, Microsoft avait publié un billet de blog surprenant , indiquant que non seulement les futurs processeurs d'Intel et d'AMD ne seraient supportés pleinement que par Windows 10, mais qu'en prime les plate-formes Intel Skylake (la dernière génération en date de processeurs d'Intel) ne disposeraient d'un support sous Windows 7 (et 8.1) que jusqu'en juillet 2017 !

Quelque chose que nous avions interprété à l'époque comme une bien lourde tentative d'inciter les OEM, les revendeurs, et les utilisateurs, à passer à Windows 10. La firme de Redmond ayant été pour le moins obscure sur ce que cette limite supposait, sous entendant dans son billet que seules les failles de sécurité les plus critiques feraient l'objet de patch.

Rapidement, Microsoft est revenu en arrière une première fois, rajoutant une année de "support" et repoussant cette limite à juillet 2018.

Aujourd'hui, Microsoft revient en arrière une deuxième fois, abandonnant définitivement l'idée d'un support sélectif de Skylake. Un nouveau billet de blog  indique que Microsoft fournira "tous les patchs" pour les plate-formes Skylake jusqu'à la fin du support officiel de Windows 7 (14 janvier 2020) et 8.1 (10 janvier 2023). Microsoft crédite ce changement à son "partenariat fort" avec Intel qui s'occupera de la validation des patchs, et aussi à la demande de ses clients entreprise.

Microsoft continue cependant d'indiquer que les futures plate-formes d'Intel et d'AMD comme Kaby Lake et Bristol Ridge ne seront "supportés pleinement" que sous Windows 10. On ne sait pas encore ce que cela veut dire, il serait étonnant qu'Intel et AMD ne proposent pas, par exemple, de pilotes chipsets pour Windows 7 et 8.1 pour leur prochaine génération.

Cette capitulation de Microsoft n'est pas forcément surprenante étant donné la frilosité historique des entreprises à passer à une nouvelle version de Windows. Combiné à la non percée sur le marché des smartphones avec Windows 10 Mobile et malgré l'utilisation de techniques peu admissibles d'un point de vue moral  (et légal ) pour forcer les mises à jour vers Windows 10, la société de Redmond à du revenir en arrière  sur ses objectifs d'atteindre un milliard de machines sous Windows 10 d'ici 2018.

Les changements de politique de Microsoft en matière de vie privée posent également question, la société utilisant désormais abondamment la "télémétrie", et Microsoft se réservant le droit "d'accéder, transférer, communiquer et stocker" vos données personnelles dans une liste de cas relativement large  (voir la section complète Reasons We Share Personal Data pour plus de détails), incluant par exemple la protection de la propriété intellectuelle de Microsoft !

On notera cependant qu'une grande partie de la télémétrie a été déployée sous Windows 7 et 8.1 via des mises à jour Windows Update. Si l'on pouvait désactiver manuellement celles ci, nos confrères d'Ars Technica  indiquaient hier que Microsoft ne proposera plus la possibilité pour Windows 7 et 8.1 de télécharger et choisir individuellement les patchs à partir d'octobre, proposant uniquement des bundles. Dans un premier temps, cela ne concernera que les nouveaux patchs de sécurité mais toutes les mises à jour seront concernées à terme.

V-NAND Gen4 et Z-NAND pour Samsung

Publié le 11/08/2016 à 15:54 par Guillaume Louel

Samsung est lui aussi bien évidemment présent au Flash Memory Summit et en profite pour annoncer sa quatrième génération de mémoire NAND 3D (connue sous le nom marketing V-NAND). L'année dernière, Samsung annonçait sa troisième génération qui faisait passer à 48 couches pour obtenir jusque 32 Go par die.

 
 
Photos Golem.de 

Cette année, Samsung annonce 64 couches pour une densité maximale de 512 Gbit en TLC, soit 64 Go par die. De quoi permettre d'atteindre pas moins de 1 To par package (en superposant 16 dies). Samsung proposera donc un SSD BGA de 1 To avec 1500 Mo/s en lecture et 900 Mo/s en écriture.


Le PM1643 de 32 To, photo The SSD Review 

Le SSD PM1633a de 16 To (qui avait été annoncé lors du Flash Memory Summit 2015 il y a un an, mais seulement commercialisé ces dernières semaines sera remplacé à terme par un modèle 32 To, le PM1643.

Une version 32 To en NVMe est également annoncée sous la référence PM1735 et un modèle M.2 de 4 To est également au programme en taille standard, et Samsung compte proposer en 2017 un "nouveau" format de M.2 dédié aux serveurs, le M.2 32114 (32mm de large pour 114 de long) avec une capacité pouvant atteindre 8 To, ce qui permettra d'atteindre 256 To de stockage dans un rack 1U.

Bien évidemment, et le lancement ces derniers jours du PM1633a le prouve, les annonces de Samsung se traduiront au fur et a mesure dans les mois à venir, le communiqué de presse du constructeur  évoque le quatrième trimestre pour les premières disponibilités de produits basés sur la V-NAND de quatrième génération. Le PM1643 est quand à lui annoncé pour 2017 sans plus de précision.

 
 
Photos Anandtech 

On notera enfin une dernière annonce très floue de la part de Samsung avec la Z-NAND, un "nouveau type de mémoire" qui partage "la même structure fondamentale que la V-NAND" en utilisant un "design de circuit et un contrôleur unique". Si cela ne nous dit pas grand chose sur la manière dont fonctionne la technologie, il faut y voir la réponse de Samsung à la PRAM 3D XPoint d'Intel/Micron, le constructeur ne s'en cache en reprenant les mêmes arguments, une mémoire qui vient s'intercaler entre la DRAM (volatile, très rapide) et la NAND (non volatile, moins rapide).

La Z-NAND aurait une latence similaire à la PRAM, des performances séquentielles 20% supérieures, et une efficacité énergétique significativement meilleure. Bien entendu ces chiffres sont assez creux sachant que Samsung ne précise pas à quelle PRAM il se compare, mais on voit bien qu'Intel et Micron sont visés par cette annonce. Plus de détails devraient être disponibles d'ici quelques mois, Samsung annonçant une disponibilité en 2017.

Top articles