Les derniers contenus liés au tag Intel

Afficher sous forme de : Titre | Flux Filtrer avec un second tag : AMD; Atom; Core i3; Core i7; Haswell; Ivy Bridge; LGA 1150; LGA 1155; LGA 2011; Skylake;

TSMC et InFo PoP pour l'A10 de l'iPhone 7

Publié le 19/09/2016 à 14:38 par Guillaume Louel

Ce week end, la société Chipworks a procédé à son traditionnel "teardown" des puces incluses dans l'iPhone 7 , en se concentrant particulièrement sur le SoC A10 d'Apple.

Rappel sur l'A9

Avant de regarder l'A10, revenons un instant sur l'A9 inclus l'année dernière dans l'iPhone 6S. Il avait la particularité d'être sourcé en parallèle chez Samsung et TSMC, quelque chose de quasi unique pour des puces haut de gamme sur des process de dernière génération, ce qui nous avait permis d'effectuer quelques comparaisons.


Les deux A9 de l'iPhone 6S (2015)

La différence la plus visible était la densité des deux process : l'A9 "Samsung" mesurant 96mm2, contre 104.5mm2 pour la version TSMC. A l'époque nous n'avions pas de certitudes sur les variantes exactes des process utilisées. Depuis, Chipworks a confirmé qu'il s'agissait bien du 14LPE chez Samsung. Le cas de TSMC est plus compliqué, Chipworks ne répondant pas (gratuitement) à la question. Les rumeurs laissent penser qu'il ne s'agissait pas d'un simple 16FF, mais d'une version "custom" empruntant en partie au process 16FF+.

Outre la densité, les tests pratiques avaient suggéré une différence de consommation à pleine charge avec un avantage pour la puce de TSMC. De quoi laisser penser que son process avait besoin de tensions inférieures à celui de Samsung pour obtenir les mêmes performances.

Depuis, Chipworks a la aussi répondu partiellement à la question suggérant que le problème se situerait pour le process de Samsung sur le rapport puissance/performances de ses NMOS . On ne sait pas si le problème persiste sur la version 14LPP qui a remplacé le 14LPE.

L'A10 : 16FFC TSMC

Première différence par rapport à l'année dernière, l'A10 semble produit cette année exclusivement par TSMC. Il est plus large que l'A9, mesurant 125mm2 pour 3.3 milliards de transistors annoncés. Côté process il s'agit du 16FFC (ou d'une variante) de TSMC, la troisième version "optimisée" du 16nm de TSMC. Annoncée en janvier dernier, le C signifie "Compact" et ce process vise avant tout les usages basses consommation tout en réduisant de manière significative les coûts de fabrication.

D'après Chipworks, l'utilisation des bibliothèques optimisées permet une bien meilleure utilisation du die, avec une compacité équivalente à celle des process TSMC précédents. Chipworks estime que la même puce aurait demandé 150mm2 en 16FF. Etant donné que 70 tapeouts de clients de TSMC sont attendus sur ce process cette année, les progrès de densité du 16FFC devraient profiter assez largement, on attendra de voir les constructeurs qui annonceront des puces l'utilisant.

 
 

Chipworks note également que l'A10 est beaucoup moins haut que les générations précédentes. Comme beaucoup de SoC, il est de type PoP et embarque la mémoire au dessus du die logique. Cependant plutôt que d'empiler les quatre dies de mémoire (2 Go de LPDDR4 Samsung sur l'A10 de l'iPhone 7), ils sont placés côte à côte.

Qui plus est, comme nous le supposions la puce utilise le nouveau packaging InFo de TSMC (dans sa version InFo-PoP) pour relier les dies entre eux.

big.LITTLE et performances

Côté performances les premiers benchmarks synthétiques évoquent 40% de gains pour le CPU ARM par rapport à l'année dernière, tout en restant en 16nm.

Pour arriver à ce gain, Apple augmente d'abord significativement la fréquence, passant de 1.85 GHz sur l'A9 à 2.35 GHz sur l'A10. Sur ce point, la marque exploite à la fois la marge notée de son process l'année dernière (on peut supposer facilement que l'A9 aurait eu une fréquence plus élevée s'il avait été sourcé uniquement chez TSMC) et les gains apportés par le 16FFC.

Ce gain de 27% de fréquence est accompagné de changements au niveau de l'architecture. Ceux ci ne sont pas encore connus, au delà du nom Hurricane, mais Chipworks note que le cluster CPU prend une place plus importante sur le die, 16mm2 face à 13mm2 sur l'A9, malgré l'utilisation d'un process plus compact.

Il est cependant difficile de se baser sur cette différence de taille étant donné que l'A10 est en réalité un quad core big.LITTLE dans la nomenclature ARM. En plus des deux coeurs hautes performances à 2.35 GHz (big), deux coeurs basse consommation à 1.05 GHz (LITTLE) sont également présents sur le die (leur emplacement exact est pour l'instant inconnu, ce qui vaut les points d'interrogation sur le diagramme au dessus).

Contrairement à d'autres implémentations dans l'écosystème ARM, les applications ne peuvent pas utiliser en simultanée les deux blocs de coeurs, le passage de l'un à l'autre étant transparent pour elles (géré par la puce et l'OS). L'intérêt de cet arrangement est bien entendu d'augmenter l'autonomie en ne sollicitant les coeurs haute performances que lorsque nécessaire.

Déjà largement en avance côté performances sur le reste de l'écosystème ARM, l'A10 commence à devenir embarrassant même pour Intel, dépassant un Core M Skylake en monothread sous Geekbench 4 (voir ici  et là  ), avec un "TDP" au moins deux fois inférieur (et sans mécanisme Turbo).

Intel se consolera tout de même de sa présence dans une partie des iPhone 7 car c'est l'autre information de Chipworks, la société confirme qu'une partie des modèles utilise un modem Intel XMM 7360 (certains modèles intègrent un modem Qualcomm X12). Très en retard, le XMM 7360 est un modem LTE 450 Mb/s Cat 10 certes dessiné par Intel, mais fabriqué selon toutes vraisemblances comme ses prédécesseurs... par TSMC.

Coffee Lake en 28W et 45W pour 2018

Publié le 15/09/2016 à 13:18 par Guillaume Louel

Un extrait de roadmap d'Intel a été publié ces derniers jours sur le forum d'Anandtech . On y voit apparaître pour la première fois Coffee Lake dont nous avions appris l'existence durant l'été.

Pour rappel, Intel propose aujourd'hui Kaby Lake, sa troisième itération sur le process 14 nm, uniquement pour les modèles 15 et "4.5" watts (les gammes U et Y). Lors de l'annonce, Intel avait indiqué que les versions Desktop ainsi que les versions quad cores mobiles et équipées du cache L4 seraient annoncées en janvier. Cette roadmap d'avril semble alignée sur ce point, même si l'on note qu'une version quad core GT2 (sans mémoire L4 embarquée) en 45W (gamme H) était prévue pour le 4eme trimestre. On verra si cette version aura été repoussée également à janvier.

Cannon Lake, fabriqué en 10nm, est prévu pour la toute fin de l'année 2017, uniquement là aussi sur les gammes 15 et "5.2" watts à l'image de Kaby Lake aujourd'hui.

En ce qui concerne Coffee Lake, il s'agira d'une quatrième itération en 14nm, prévue pour le second trimestre 2018. On le retrouvera à la fois dans les gammes U et H, pour les dies 15/28W et les 45W. Plusieurs surprises de ce côté, d'abord le fait qu'Intel proposerait des puces 15/28W quad core avec Coffee Lake. Ce serait un changement majeur, les quad core étant réservés jusqu'ici au TDP supérieur côté mobile (45W).

Et comme nous l'avions entendu a l'époque, pour le plus haut de gamme (45W), Intel augmentera là aussi le nombre de coeurs passant (enfin) à 6. Il est là aussi intéressant de noter que si le GT3e est bien présent sur le segment en dessous, dans les gammes H le GT4e est aux abonnés absents, aussi bien pour Kaby Lake que Coffee Lake. Il faut dire que même côté Skylake, si les modèles Iris Pro 580/GT4e ont été annoncés, en pratique leur disponibilité dans des PC portables est proche du néant.

Après un Broadwell-H très en retard et la situation actuelle autour des Skylake-H (qui fâche parmi ses clients les plus visibles comme Apple qui avait utilisé les modèles Iris Pro Quad Core dans ses Macbook Pro), on peut se demander si Intel ne jette tout simplement pas l'éponge sur ces SKUs pour ses deux prochaines générations...

Brix Gaming UHD chez Gigabyte

Publié le 09/09/2016 à 12:29 par Guillaume Louel

Gigabyte vient de lancer un nouveau mini-PC dans sa gamme Brix, le Brix Gaming UHD. Nous avions déjà entrevu rapidement ce modèle au Computex.

 
 

Visuellement, il s'agit d'une tour à base carrée (11cm de côté pour 22cm de hauteur) avec un coin aplati dans lequel on retrouvera la connectique de la carte mère, à savoir deux ports USB 3.0, deux ports USB 3.1 (un Type-A et un Type-C), un connecteur Gigabit Ethernet, les prises audio et deux connecteurs pour les antennes WiFi. A gauche de ces ports, on retrouvera ceux de la carte graphique, à savoir un HDMI et trois Mini DP.

Sur son site, Gigabyte met en avant l'existence de deux modèles, un en Core i5 et l'autre en Core i7 de génération Skylake. On aura donc au choix un Core i5-6300HQ (2.3/3.2 GHz) ou un Core i7-6700HQ (2.6/3.5 GHz). Pour le reste les caractéristiques sont identiques avec une carte mère utilisant le chipset HM170 d'Intel disposant de deux slots SO-DIMM DDR4.

La conception interne est assez originale puisque la carte mère est placée en diagonale dans le boîtier tandis que la carte graphique, une GTX 950 avec 4 Go de GDDR5, est placée sur un coin du boîtier. Il s'agit d'une carte MXM placée sur un PCB custom. Ce dernier est relié par deux câbles à la carte mère pour faire passer le signal PCI Express. La carte graphique est surplombée par un radiateur biseauté.

Sur la carte mère, on retrouve deux slots M.2 2280, reliés respectivement au chispet et au CPU, ainsi qu'un slot PCIe M.2 dans lequel est placée la carte WiFi Intel 8260 (ac). On pourra aussi placer deux disques SATA 2.5 pouces, un derrière la carte graphique, et l'autre dans le coin opposé à côté du radiateur processeur.

Le refroidissement est assuré par un ventilateur unique en 92mm qui aspire l'air par le bas et le fait traverser le boîtier pour sortir par le haut.

Ce design de Gigabyte a le mérite d'être original, même si il n'est pas sans nous rappeler, au moins dans l'idée de sa carte mère en diagonale le Mac Pro.

Gigabyte annonce un prix public autour de 949 euros pour la version Core i7, sans préciser clairement la disponibilité qui devrait arriver dans les prochaines semaines.

Intel se sépare de l'Intel Security Group

Tags : Intel; McAfee;
Publié le 08/09/2016 à 13:02 par Guillaume Louel

Intel vient d'annoncer un partenariat avec un fond d'investissement privé, TPG Capital, pour rendre indépendant McAfee, plus connu récemment sous le nom d'Intel Security Group depuis 2014.

La nouvelle entité reprendra le nom de McAfee et sera détenue à 51% par TPG Capital, et à 49% par Intel. L'investissement de TPG est de 1.1 milliard de dollars, mais la société ajoute la création de deux milliards de dette pour la nouvelle entité, une dette qui sera gérée par Intel.

Le montage financier - en plusieurs étapes - est un peu compliqué mais permet à Intel de dire dans son communiqué de presse  que la société recevra 3.1 milliards de dollars en cash pour la transaction. Un moyen pour Intel de sauver la face puisque pour rappel, Intel avait payé 7.7 milliards de dollars pour s'offrir McAfee en 2010.

Mais comme le pointent nos confrères de Forbes , si l'on met de côté l'édition d'une nouvelle dette, la valeur à la vente de la société n'est en réalité que de 2.2 milliards, a peine plus d'un quart de ce que valait McAfee au moment de son rachat par Intel !

Déjà peu compréhensible à l'époque, ce rachat aura été au final très coûteux pour la firme de Santa Clara. L'annonce met aussi en perspective les relations tendues entre Intel et John McAfee ces derniers jours. L'image du fondateur de McAfee  ne collait pas vraiment à celle d'Intel qui avait tout fait pour s'éloigner du nom, en renommant la société Intel Security Group en 2014.

Avec la volonté d'Intel de redonner le nom original à la nouvelle société indépendante, on comprend mieux pourquoi Intel avait annoncé son opposition  à la volonté de John McAfee de renommer sa nouvelle société "John McAfee Global Technologies". Ce dernier a déposé une plainte à New York la semaine dernière pour trancher la question.

Intel lance les Kaby Lake 2C

Publié le 30/08/2016 à 17:27 par Guillaume Louel

C'est l'été dernier qu'Intel avait annoncé un changement de stratégie. Durant des années, la firme de Santa Clara s'est tenu au Tick-Tock : lancer un nouveau process de fabrication une année (un Tick), et lancer l'année suivante une nouvelle architecture (un Tock). Un cycle de deux années (parfois étendu de quelques mois) qui se répétait depuis l'introduction du système dans les années 2000.


La version classique du packaging utilisée par Intel pour ses SoC mobiles U (15W)

Après un passage au 14nm difficile qui nous avait valu un "Haswell Refresh", Intel avait annoncé que son process 10nm serait repoussé à fin 2017 (il aurait du être introduit cette année) et que l'on aurait droit pour 2016 à un nouvelle entrant, Kaby Lake, une version "optimisée". La stratégie passante ainsi de "Process-Architecture" à "Process-Architecture-Optimisation".


La version compacte du packaging utilisée par Intel pour ses SoC mobiles Y ("4.5W")

Lors de l'annonce des résultats financiers au second trimestre l'année dernière, le CEO d'Intel Brian Krzanich avait décrit Kaby Lake comme "bâti sur les fondations de la micro architecture Skylake" mais "avec des améliorations clefs de performances". Nous pensions à l'époque qu'Intel ne ferait possiblement évoluer que son GPU.

Aujourd'hui on en sait enfin un peu plus. Intel annonce Kaby Lake comme la septième génération de processeurs Core et lance aujourd'hui six modèles de processeurs dont le "TDP" varie entre 4.5 et 15W. En pratique il s'agit des SoC deux coeurs (avec Hyper Threading) destinés aux PC portables légers (type Macbook/Ultrabook et 2-in-1). Le lancement des autres versions (mobiles 4C, avec Iris Graphics, et les versions desktop) se fera en janvier.

La plus grosse nouveauté mise en avant par Intel est l'évolution de son process de fabrication, le constructeur le qualifiant de 14nm+ (faisant echo aux 16FF+ de TSMC par exemple). Intel indique avoir amélioré la géométrie de son process, au niveau de la forme des "fins" (les ailettes qui constitue les transistors FinFET) et aussi du canal. La société annonce 12% d'amélioration de performances (sans préciser à quel niveau) ce qui est assez vague.

En effet, au fil de l'exploitation d'un process, sa fiabilité, son rendement, et incidemment ses performances évoluent. Etant donné les difficultés rencontrées par Intel au début de l'exploitation du 14nm, il est difficile de juger réellement ce que ce chiffre représente, et s'il s'agit vraiment d'une évolution par rapport à la production ayant eu lieu par exemple ces derniers mois, ou s'il s'agit tout simplement de l'évolution naturelle, lié au débogage et à l'exploitation du process.

L'autre nouveauté concerne le "Media Block", la partie du GPU qui regroupe les fonctions de décodage et d'encodage vidéo. Si Skylake avait ajouté le décodage vidéo HEVC (H.265), il n'était effectif que pour le profil "Main". Le profil "Main 10" (vidéos encodées avec 10 bit par composante), qui sera utilisé pour les Blu-Ray UHD par exemple n'était par contre pas pris en charge. C'est désormais corrigé, le Media Block de Kaby Lake décode désormais le HEVC "Main 10". On notera également l'arrivée du décodage de VP9, le codec de Google en 8 et 10 bit (un décodage "partiel" de VP9 était disponible précédemment, comme pour le HEVC Main 10 mais il était insuffisant en pratique).

En plus du décodage, l'encodage HEVC est lui aussi possible en "Main 10", ainsi qu'en VP9. L'encodage H.264 (AVC) profite d'une amélioration de performances sur l'une de ses composantes.

Dernier point, Intel parle d'une meilleure réactivité du Turbo en mode Speed Shift, permettant d'atteindre la fréquence Turbo maximale plus rapidement qu'auparavant. On passerait ainsi de 35ms à 15ms pour atteindre cette fréquence maximale.

Et... c'est tout ! Il n'y a en effet aucun autre changement architectural pour Kaby Lake, que ce soit au niveau du GPU ou du CPU. Intel met a profit son process pour faire monter les fréquences, ce qui rappellera aux plus anciens les "speed bump" qu'introduisait auparavant le constructeur. Sur le modèle Core i7 15 watts, la fréquence turbo maximale augmente ainsi de 400 MHz, ce qui se traduit par 12 à 19% d'avantage dans les benchmarks sélectionnés par Intel pour sa présentation.

Pour récapituler, voici les six références lancées ainsi que celles qu'elles remplacent :

On notera des gains de 100 à 400 MHz sur les fréquences Turbo pour les modèles U (15 Watts) et jusque 500 MHz sur les modèles Y (avec un "TDP" de 4.5 Watts), ce qui n'est pas négligeable même si l'on rappellera que ces derniers ne tiennent pas leur fréquence Turbo maximale en charge prolongée. Sur ces derniers, on notera qu'Intel fait disparaitre ses nomenclatures Core m5 et m7, remplacées par Core i5 et i7 ! Le Core m3 continue par contre d'exister.

Cette absence de changements conséquents pousse le constructeur à être créatif, comparant dans sa présentation les performances de Kaby Lake à une plateforme mobile datant de cinq ans. Un discours marketing qui aura du mal a cacher la réalité : cette septième génération est avant tout un "speed bump" légèrement amélioré de Skylake. Si l'on apprécie les gains de fréquences annoncés, il faudra attendre le mois de janvier, probablement autour du CES, pour voir en pratique ce que le constructeur proposera comme gains de fréquences pour sa plateforme desktop.

Vous pouvez retrouver la présentation "performance" fournie par Intel ci dessous :

 
 

Ainsi que la présentation plus générale :

 
 

Top articles