HardWare.fr


ARM annonce le Cortex-A73 et le Mali-G71
Processeurs
Publié le Mardi 31 Mai 2016 par Guillaume Louel

URL: /news/14645/arm-annonce-cortex-a73-mali-g71.html


ARM vient d'annoncer de nouveaux blocs disponibles pour ses partenaires. Pour rappel, ARM développe en parallèle des architectures (ARMv8-A pour la dernière version 64 bits, le pendant du x86-64 dans le monde du PC) et propose aussi ses propres implémentations de coeurs qui peuvent être utilisés par ses partenaires sous licence (l'équivalent dans le monde PC serait Intel qui autorise ses partenaires à faire des versions "custom" de Skylake).

Certains des partenaires d'ARM disposent d'une licence dite "architecture" (Apple, Qualcomm, Samsung, Nvidia...) qui leur permet de réaliser leurs propres implémentations (de la même manière qu'AMD et Intel proposent des processeurs compatibles, mais différents derrière la même architecture x86-64), même si ces derniers proposent parfois les deux. Qualcomm propose par exemple des puces utilisant les Cortex (implémentation ARM) et ses propres Snapdragon.

La nomenclature des implémentations d'ARM a toujours été compliquée à comprendre, pour ne pas dire autre chose, et autant dire qu'aujourd'hui ARM n'arrange pas son cas avec l'A73. Il fait suite sur le papier au Cortex-A72 qui avait été annoncé en février 2015 même si d'un point de vue technique les puces sont différentes.

Ce diagramme permet d'y voir un tout petit peu plus clair. Après l'époque "simple" de l'A9, ARM a proposé d'un côté des cores de grande taille, visant les hautes performances (A15, A57 et A72), également appelés big. Il s'agit de designs "Out of Order" (le processeur peut changer l'ordre des instructions pour optimiser leur exécution).

En parallèle des coeurs de plus petite tailles ont été présentés (les coeurs LITTLE comme l'A7 et l'A53). Ils utilisent un design dit "In Order" (pas de changement d'ordre) qui simplifie l'implémentation, et réduit donc la consommation de la puce. Leur niveau de performance est plus bas, mais ils disposent d'un meilleur rapport performance/watts que les coeurs big. Leur intérêt théorique est de les mélanger pour créer une architecture asymétrique (big.LITTLE, voir la présentation ici) même si en pratique, ce n'est pas toujours ce qui s'est passé.

Les deux familles sont développées par des équipes différentes (Austin pour les big et Cambridge pour les LITTLE) et au milieu de tout cela, on retrouvait les A12 et A17, mélangés sur ce graph (par une troisième équipe a Sophia-Antipolis). Il s'agissait là aussi de designs "Out of Order" mais un peu plus optimisés pour un meilleur rapport performances/watts.

Si en théorie ces puces étaient présentées comme dédiées au milieu de gamme, en pratique elles proposaient surtout une alternative aux gros coeurs ARM dont la consommation était trop élevée, obligeant de limiter fortement les fréquences pour rester dans l'enveloppe thermique d'un smartphone. On a pu voir un certain nombre de retards lors de la génération A57, particulièrement chez Qualcomm, et une surconsommation importante par rapport à ce qu'espérait ARM. Une situation qui a même poussé certains des partenaires d'ARM a proposer des puces n'utilisant que les coeurs LITTLE, un comble.

Cortex A73 : 10nm

Le Cortex A73 est présenté par ARM comme son nouveau coeur big. Il fait suite à l'A72 (16nm) et sera proposé pour les processus de fabrication 10nm. Mais contrairement à ses prédécesseurs big 64 bits (A57 et A72, c'est dur à suivre !), il s'agit sur le papier du successeur des A12/A17 (qui eux n'étaient disponibles qu'en 32 bits).

Contrairement aux A57/A72 qui pouvaient décoder trois instructions par cycle, on se limite cette fois ci à deux sur l'A73. En contrepartie, le pipeline (le nombre d'étapes par lequel les instructions passent) est significativement réduit, passant de 15 à 11 étapes. C'est au niveau du front end (récupération des instructions, décodage, changement d'ordre) que la réduction se fait. On retiendra deux changements importants, d'abord le fait que les instructions en virgules flottantes/NEON (l'équivalent des instructions vectorielles type SSE dans les architectures x86) soient traitées séparément via un décodeur distinct. La seconde est un changement au niveau des instructions arithmétiques entières avec des unités moins nombreuses mais plus performantes.

 
 

Bien que décodant une instruction par cycle en moins, l'A73 permet sur le papier au final de dispatcher 6 micro-instructions par cycle, contre 5 pour l'A72. Si l'on ajoute toutes les autres optimisations (le sous système mémoire, point faible historique des Cortex semble avoir évolué), l'A73 est annoncé comme 10% plus performant que l'A72, à fréquence/process égal.

Dans le détail, ARM annonce plus spécifiquement 15% de gains sur les copies mémoire, et 5% sur un encodage FFMPEG utilisant les instructions vectorielles NEON. Notez qu'a process égal, un coeur A73 est 25% plus petit qu'un coeur A72 et consomme 20% d'énergie en moins. En 10nm, un coeur A73 ne mesure que 0.65mm2.

Pour les puces que l'on retrouvera dans le commerce, ARM annonce 30% de performances en plus par rapport aux A72 en profitant du 10nm et de la baisse de consommation pour augmenter la fréquence. Un autre gain significatif mis en avant par le constructeur est que ses puces ne devraient plus voir leur fréquence chuter drastiquement lorsque l'on utilise tous les coeurs en simultanée.

Sur le papier l'A73 est un meilleur compromis côté architecture que ses prédécesseurs, ce qui devrait ravir les partenaires d'ARM, assez peu heureux des A57. Si ARM vise le 10nm, en pratique il propose à ses partenaires des designs A73 en 28, 16 et 10nm. D'ici la fin de l'année, des SoC 16nm devraient faire leur apparition et c'est probablement là qu'on les trouvera en masse (le 10nm sera probablement, pour rappel, réservé au moins dans un premier temps aux gros acteurs du marché comme Qualcomm et Apple à l'image de ce que l'on avait vu avec le 20nm).

Mali-T71 et Bifrost

L'autre annonce d'ARM concerne les GPU. En plus de blocs CPU, ARM propose également à ses partenaires des blocs graphiques qu'ils peuvent utiliser ou non (d'autres sociétés comme Imagination Technologies proposent par exemple leur PowerVR) pour créer leurs SoC.

La nouvelle puce est baptisée T71 et vient faire suite aux GPU T800 dont nous vous avions parlé l'année dernière. Le changement de nomenclature annonce en réalité un changement d'architecture, on passe de l'architecture Midgard à la bien nommée Bifrost.

La transition est importante avec un changement complet de philosophie, passant d'un modèle VLIW (Very Long Instruction Word) à un modèle scalaire... soit exactement la transition qu'avait effectué AMD avec GCN !

 
 

La transition aux unités scalaires change en pratique l'ordre dans lequel les données sont traitées, en simplifiant la compilation des shaders (le parallélisme étant extrait des threads, et non d'assemblage d'instructions par le compilateur).

 
 

Les threads - clauses dans le langage ARM - sont particulièrement optimisées avec des caches a tous les niveaux (sous la forme de register file) pour s'assurer que les accès mémoires soient optimisés au mieux. Cumulé à tout les autres changements architecturaux (le tiler a également été modifié pour réduire sa consommation mémoire), ARM annonce 50% de gains de performances avec Bifrost.

En pratique le Mali-T71 est le premier GPU ARM utilisant Bifrost, il regroupera jusqu'à 32 shader cores (qui comptent chacun 12 unités scalaires) et reste compatible comme ses prédécesseurs avec OpenGL ES 3.x, OpenCL 2.0 et Vulkan. On rajoutera un dernier mot sur l'interconnexion puisque l'on a droit à un accès au cache fully coherent, ce qui signifie que CPU et GPU peuvent partager la même mémoire cache en opérant en parallèle sans blocage (à la manière de Kaveri chez AMD qui utilisait cependant deux bus distincts), ce qui pourra être utile pour des tâches compute ou l'on fait travailler de concert CPU et GPU (ce qui n'est pas forcément la majorité des usages sur les plateformes mobiles).



Copyright © 1997-2024 HardWare.fr. Tous droits réservés.