Actualités informatiques du 11-09-2014

Flux XML des news Flux XML avec la liste des 20 dernières actualités.

IDF: Cohabitation Broadwell-K et Skylake

Publié le 11/09/2014 à 19:35 par
Imprimer

Une autre question brulante à laquelle nous espérions obtenir une réponse est la situation des plateformes desktop grand public d'Intel pour 2015. En effet si sur le haut de gamme les Haswell-E ont été lancés, le remplacement de Haswell en LGA1150 par ses versions 14nm est plus flou.

Pour rappel, Intel a fait le choix de ne décliner son architecture Broadwell côté desktop que sur des modèles Broadwell-K, les modèles haut de gamme dédiés à l'overclocking et qui auront la particularité d'intégrer le GPU Iris Pro (avec son cache L4). Broadwell ne sera pas décliné sur desktop au delà de ces modèles haut de gamme, qui seront probablement au nombre de deux comme à l'habitude. L'existence de ces modèles Broadwell-K est pour rappel un argument de vente pour les cartes mères Z97 d'Intel qui supporteront ces puces. Aux dernières nouvelles, le lancement de ces puces est prévu pour le troisième trimestre 2015 et Intel n'a pas apporté de précisions supplémentaires à son planning durant l'IDF.


Pour rappel, le tick en 14nm qu'est Broadwell sera suivi d'un tock en 14nm, Skylake qui lui aussi est prévu pour 2015. La conférence d'ouverture de l'IDF a été l'occasion pour Intel de confirmer que Skylake sera mis en production - et lancé - dans la seconde moitié de l'année 2015. Lors d'une table ronde avec Kirk Skaugen (Senior Vice President et General Manager du PC Client Group) il nous a été confirmé que les modèles desktop font partie des Skylake prévus pour 2015. Par contre, interrogé sur la cohabitation entre Broadwell-K et Skylake, et le lancement des Skylake-K, le responsable n'a pas voulu s'engager indiquant que ce genre de détails serait fourni un peu plus tard lorsque l'on approchera du lancement. Entre deux portes, on aura entendu que le plan actuel est de conserver Broadwell-K deux trimestres avant de le remplacer par Skylake-K. Le lancement des Skylake non K (Skylake-S) était censé intervenir avant, au second trimestre ce qui n'est plus le cas.


La roadmap de juin d'Intel et sa superposition de Broadwell-K et de Skylake-S

Il faut dire qu'Intel se retrouve dans une situation curieuse. On rappellera que Skylake n'utilisera pas le même socket que Haswell et Broadwell puisque le constructeur aurait supprimé les FIVR (régulation de tension intégrée) dans Skylake qui utilisera sur desktop le Socket LGA1151. On se retrouvera donc avec trois sockets qui cohabiteront potentiellement, en ordre de prix LGA1151, LGA1150 et LGA2011v3. Il sera intéressant de voir si Intel profitera du retard de Skylake sur son planning original pour proposer, par exemple en fin d'année 2015, un lancement simultané de Skylake-S et Skylake-K.

IDF: Stepping F du Core M

Publié le 11/09/2014 à 17:52 par
Imprimer

Au-delà du TDP, l'autre interrogation concernant le lancement des Core M par Intel était ce fort curieux PCN qui indiquait la fin de vie plus que prématurée, au 26 septembre, des processeurs qui venaient tout juste d'être annoncés.


Par deux fois, on nous a confirmé que ce PCN annonce en réalité un nouveau stepping de Broadwell-Y, le stepping F, lié à des changements sur le process 14nm. Il faudra attendre un peu plus pour savoir quels sont les changements précis, la spec update du Core M n'évoquant pas encore ce stepping F. Si les changements autour du process sont permanents, notamment pour améliorer les rendements de production, il est assez rare de voir de nos jours chez Intel un stepping justifié par le process.

La mention au sein du PCN d'une demande de marché ayant évolué vers d'autres modèles est selon Kirk Skaugen (Senior Vice President et General Manager du PC Client Group) probablement liée à un document réalisé à partir d'un modèle générique. Il est vrai qu'on retrouve habituellement ce genre de formulation dans les PCN annonçant la fin de vie de produit, mais en cas de simple transition de stepping le modèle est encore différent et fait référence aux nouveaux produits et aux changements apportés.

En l'état on ne sait donc pas si cette première fournée de Core M survivra au stepping F ou si elle sera remplacée par d'autres références, par exemple avec des fréquences différentes. La date d'arrivée du stepping F ne nous a pas été précisé, toutefois les rumeurs font état de début 2015, date à laquelle d'autres modèles de Core M sont attendus tout comme des Core de 5è génération basés sur Broadwell-U (un dual core plus classique avec notamment un TDP et des fréquences en hausse, un HD Graphics plus musclé et un chipset externe).

Tout ceci renforce l'impression que ce premier lot de Core M est là avant tout pour tenir la promesse du lancement de produits en 14nm avant la fin de l'année 2014, même si le process n'était pas encore techniquement au niveau espéré par le constructeur. Nous espérons qu'Intel clarifiera dans les semaines à venir les changements et éventuels nouveaux produits engendrés par ce stepping F.

Mise à jour du Guide PC HardWare.fr

Publié le 11/09/2014 à 16:33 par
Imprimer

Depuis 2010, nous vous proposons à travers un guide des configurations types afin de répondre à vos besoins selon vos utilisations et votre budget ! Les mises à jour sont régulières et ne font pas l'objet d'un news systématique, mais les derniers changements étant importants nous en profitons pour vous les signaler par ce biais.



Pour commencer depuis quelques jours sur les Power User le SSD intégré est désormais un Crucial MX100 256 Go, il remplace le Sandisk Ultra Plus qui n'est plus disponible. Le Crucial MX100 représente à ce jour le meilleur rapport qualité/performance/prix en SSD, particulièrement en versions 256 Go et 512 Go si vous en avez les moyens.

Dans la gamme Power Gaming, le Core i5-4670K laisse sa place au Core i5-4690K que nous n'intégrions pas jusqu'alors du fait d'un écart de prix trop important. Il est désormais plus réduit ce qui justifie le passage à ce processeur "Devil's Canyon" qui se distingue pour rappel par une fréquence par défaut 100 Mhz supérieur et un contact entre IHS et die de meilleure qualité.

Sur la gamme Gaming, on gagne également 100 MHz avec le passage des Core i3-4130 et i5-4440 aux Core i3-4150 et i5-4460. Mais le changement le plus important se situe au niveau du boitier qui est désormais un Zalman R1 qui pour 40 € propose une liste de fonctionnalités impressionnante (porte avant, fenêtre latérale, régulateur ventilateur 2 vitesses, 3 ventilateurs 120mm, etc.).

Enfin le boitier des PC Office et Family évolue également, on passe d'un Zalman ZM-T4 à un Zalman T5 qui profite du même chassis mais d'une façade qui est plus à notre goût.

> Guide : Les PC HardWare.fr !

P.S. : Afin de conserver une uniformité au niveau des commentaires, ceux-ci ne sont autorisés que sur le guide à proprement parler.
P.S.2 : Si vous envisagez d'acheter une nouvelle machine et que vous pouvez attendre quelques semaines, il est préférable d'attendre de voir comment AMD et Nvidia vont positionner leurs gammes suite à leurs divers lancement à venir.

IDF: Le TDP compliqué du Core M

Publié le 11/09/2014 à 04:11 par
Imprimer

Une des interrogations lors de l'annonce du Core M par Intel la semaine dernière concernait le TDP assez impressionnant annoncé pour ces premiers processeurs Broadwell, à savoir « seulement » 4.5 watts. Une valeur qui pouvait paraitre particulièrement basse pour un processeur qui n'est pas un Atom, particulièrement quand la génération précédente en Haswell ne passait pas sous les 11.5 watts de TDP… mais disposait d'un SDP de 4.5 watts.

A la réponse de savoir quel est exactement le TDP du Core M, il conviendrait de savoir réellement ce que ce mot veut dire. En effet cette valeur a été fortement maltraité par de nombreux constructeurs - principalement pour des raisons marketing - et plus récemment certaines techniques ont été ajoutées dans les processeurs pour jouer sur des paramètres d'inertie thermiques. Ceci sans compter l'ajout du SDP par Intel avec Ivy Bridge que nous n'avions pas manqué de critiquer ici . Qu'est ce donc que le TDP ? Prenons la définition officielle chez Intel sur son site ARK (il s'agit de la définition du Max TDP, soyons précis !) :


On parle ici de la puissance « quasi » maximale qui peut être tirée (du système d'alimentation) pour un temps donné significatif, en faisant tourner des logiciels disponibles dans le commerce. On notera rapidement l'ambiguité du quasi maximal, mais nous attirons votre attention sur le fait que l'on parle ici de puissance tirée du système d'alimentation, cela aura son importance par la suite.

Pourquoi quasi ? La définition fait référence aux Datasheet (volume 1) d'Intel. Regardons celle des Core Y 11.5 Watts de génération Haswell :


On retrouve deux Power Limit (PL1 et PL2). La première Power Limit correspond au « SKU TDP » (le TDP annoncé plus haut en Max TDP) et il s'agit de la valeur moyenne qui ne doit pas être dépassée sur une période donnée (par défaut, une tranche d'une seconde).

PL2 correspond à une surconsommation autorisée pour tirer partie de l'inertie thermique du processeur. Cette valeur est fixée à 1.25x le TDP (ce qui nous vaut la notion de quasi plus haut) et n'est autorisée que durant la montée en température du processeur. Il est possible de dépasser cette valeur pour des pics de 10 millisecondes. Tout ceci est résumé par ce diagramme :

 
La durée maximale d'un passage à PL2 (1.25x le TDP) est par défaut de 1.5x le PL1 Time (qui est par défaut sur Haswell-Y d'une seconde, soit 1.5 secondes au total, mais qui peut être augmentée, Intel recommandant 28 secondes pour les applications mobiles).

Comparons maintenant a la spec Core M :


Plusieurs changements. On notera d'abord l'arrivée d'un PL3 optionnel qui sert a protéger la batterie et qui est désactivé par défaut. Ensuite, si la définition de la valeur PL1 est toujours recommandée comme étant égale au TDP, il n'y a plus de valeur par défaut indiquées pour PL2 (anciennement 1.25x le TDP) ou le PL1 Time (appelée PL1 Tau ici). Le schéma évolue également :


On notera ici que le PL2 est indiqué comme pouvant être soutenu en théorie pendant des centaines de secondes, dépendant de la valeur PL1 Tau sans plus de précisions. Là encore un indice potentiel sur la manière d'optimiser les performances, calculer une moyenne sur un temps plus large laisse de plus fortes opportunités pour obtenir des périodes de système idle pour « maintenir » la moyenne.

Reprenons maintenant le slide qui nous avait tant intrigué plus tôt :


Intel utilise déjà sur les solutions précédentes un driver baptisé DPTF qui peut être utilisé pour reconfigurer le TDP d'une puce (un pilote open source que l'on peut trouver ici ). Jusqu'ici il servait notamment au cTDP (configurable TDP) et aussi à un mode Low Power (LPM).

La nouveauté de Broadwell concerne l'Active Skin Temperature Management qui étend le rôle du driver DPTF pour prendre en compte la température du système, en plus de la température du processeur qui était déjà prise en compte. Dans ce cas, DPTF peut faire varier les valeurs PL1 et PL2 pour « profiter » de l'inertie thermique du châssis (en plus de l'inertie thermique du processeur). En clair, la spécification permet de dépasser le TDP annoncé dans la durée en redéfinissant les valeurs PL1 et PL2 ! De combien, et dans quelles circonstances n'est pas une information que nous avons pu obtenir. On nous aura tout de même indiqué qu'en pic maximal, ces puces pouvaient avoir une consommation de 15 watts sur une durée de 10 millisecondes et que les plateformes devaient être prévues électriquement pour cette charge.


Ainsi, nous avons pu mettre nos mains sur des prototypes de telles plateformes dont l'arrière entier du châssis servait de dissipateur thermique au système, la sonde de « skin température » étant placée sur la carte mère. Si nous n'avons pas pu choisir les benchs qui tournaient sur ces plateformes ou utiliser des outils de monitoring pour évaluer la consommation en pratique, il semblait clair que ces tablettes pouvaient s'échauffer au delà de ce que l'on attendrait pour 4.5 watts en charge.

Bien entendu, l'idée de base d'Intel qui consiste a rajouter une seconde gestion de l'inertie thermique, celle du châssis, en sus de celle du processeur, pour maximiser les performances est loin d'être inintéréssante, pour ne pas dire qu'elle est astucieuse, mais l'on ne peut s'empêcher de noter que cela ne fait que rajouter une couche de flou supplémentaire sur la notion de TDP déjà fortement malmenée, tout en déportant ce gain de performances sur la qualité (ou non) du châssis utilisé. Ainsi, un châssis comme celui de démonstration utilisé par Intel maximise fortement les performances et rien ne dit que les chiffres de performances de benchmarks que l'on nous a montré se retrouveront sur des designs finaux de constructeurs. Si la volonté d'optimiser d'Intel est louable, en pratique nous préfèrerions que le constructeur soit un peu plus clair sur ses spécifications qui deviennent fort difficilement lisibles !

Top articles